

Dietary Salt Intake and Risk of Pediatric MS: A Prospective Case-Control Study

Jamie McDonald, MS¹, Jennifer Graves, MD, PhD¹, Sabeen Lulu, MD¹, Amy Waldman, MD³, Benjamin Greenberg, MD, MHS⁴, Bianca Weinstock-Guttman, MD⁵, Greg Aaen, MD⁶, Jan Mendelt-Tillema, MD⁷, Janace Hart, BA¹, Jayne Ness, MD⁸, Jennifer Rubin, MD⁹, Lauren Krupp, MD³, Mark Gorman, MD¹⁰, Moses Rodriguez, MD⁷, Tanuja Chitnis, MD¹⁰, Timothy Simmons, MStat¹¹, T. Charles Casper, PhD¹¹, John Rose, MD¹², Emmanuelle Waubant, MD, PhD¹, for the Network of Pediatric Multiple Sclerosis Centers ¹UCSF Regional Pediatric MS Center, San Francisco, CA, ²Department of Neurology, University of Pennsylvania, Philadelphia, PA, ³Department of Neurology, University of Pennsylvania, Philadelphia, TX, ⁵The Pediatric MS Center at the Jacobs Neurological Institute, SUNY Buffalo, NY, ⁶Department of Neurology, Mayo Clinic, Rochester, MN, ⁸Alabama Pediatric MS Center, Birmingham, AL, ⁹Department of Pediatric Neurology, Northwestern Feinberg School of Medicine, Chicago, IL, ¹⁰Partners Pediatrics, University of Utah, Salt Lake City, UT, ¹²Department of Neurology, University of Utah, Salt Lake City, UT

Background

- Environmental and dietary factors have become increasingly recognized as risk factors for developing multiple sclerosis (MS).
- High salt has been shown to increase disease onset and progression in recent animal studies.
- Pediatric MS offers a unique opportunity to study salt intake as a potential dietary risk factor close to MS onset.

Objective

To determine whether dietary salt intake is higher in a multicenter cohort of pediatric MS subjects compared to pediatric controls.

Methods

Subjects

- Cases: met McDonald MS criteria with onset before 18 years of age, less than 2 years duration, seen at one of the 13 pediatric MS Centers.
- Controls: <20 years of age, seen at general pediatric clinics at the same participating institutions.

Dietary sodium intake measurement

- The Block Kids Food Screener (NutritionQuest) was administered to estimate dietary sodium intake.
- This self-report questionnaire has been validated against 24hour dietary recalls and includes 41 questions on food and beverage consumption and frequency during the past week.

Statistical analysis

Sodium intake was compared between cases and controls and adjusted for age, race, and insurance status as a proxy for socioeconomic status in logistic regression models.

Results

	Cases N=122	Controls N=202	All N=324	P-value
Age (mean +/- SD)	15 (4)	14 (4)	14 (4)	<.01
Energy (kcal/d)	1308 (618)	1356 (658)	1338 (643)	0.51
Total fat (g/d)	53 (29)	55 (29)	54 (29)	0.56
Gender				0.03
Female	72 (59.02%)	94 (46.53%)	166 (51.23%)	
Race				0.51
Am. Indian, Alaskan Native	2 (1.64%)	3 (1.49%)	5 (1.54%)	
Asian	6 (4.92%)	14 (6.93%)	20 (6.17%)	
Black, African American	22 (18.03%)	36 (17.82%)	58 (17.90%)	
Native Hawaiian, Pac. Islander	1 (0.82%)	0 (0.00%)	1 (0.31%)	
White	70 (57.38%)	133 (65.84%)	203 (62.65%)	
Mixed	11 (9.02%)	11 (5.45%)	22 (6.79%)	
Unknown, missing	10 (8.20%)	5 (2.48%)	15 (4.63%)	
Ethnicity				<.01
Hispanic or Latino	40 (32.79%)	39 (19.31%)	79 (24.38%)	
Not Hispanic or Latino	80 (65.57%)	160 (79.21%)	240 (74.07%)	
Unknown, missing	2 (1.64%)	3 (1.49%)	5 (1.54%)	

Table 1. Baseline characteristics between cases and controls.

Table 2. Comparison of unadjusted dietary sodium intake between cases and controls.

Sodium Intake	Gender	Cases N=122	Controls N=202	All N=324	P-value
Sodium (mg/day)	All	1984 (1110)	2094 (1150)	2053 (1134)	0.23
	Male	2354 (1260)	2457 (1333)	2424 (1308)	0.49
	Female	1728 (916)	1677 (695)	1699 (797)	0.89
Excess sodium (%)	All	75/122 (61%)	139/202 (69%)	214/324 (66%)	0.18
	Male	38/50 (76%)	88/108 (81%)	126/158 (80%)	0.43
	Female	37/72 (51%)	51/94 (54%)	88/166 (53%)	0.71

1.042, p=0.139).

Conclusion

Acknowledgements

Results cont.

Analyses adjusted for age, race and insurance status revealed a trend toward increased odds of MS (OR=1.018) for each 100 mg/d increase in sodium (95% CI 0.994,

No significant difference in dietary sodium intake was found between cases and controls in the preliminary analysis.

The suggested trend toward an increased likelihood of MS with higher salt intake in the partially adjusted model highlights the need for further investigation of salt as a potential mediator of MS in a larger subject pool.

An additional 105 subjects will be included, and adjusted models including body mass index data are pending.

Funded through a grant from the Foundation of the Consortium of Multiple Sclerosis Centers' MS Workforce of the Future Program Supported by NIH: RO1NS071463-03, PI E. Waubant Supported by the National MS Society: Grant, HC 0165, PI T. C. Casper