Cognitive Impairment and Magnetic Resonance Changes in Multiple Sclerosis

Victoria A Levasseur1,2, Samantha Lancia3, Gautam Adusumilli1, Zach Goodman1, Stuart D. Cook3, Diego Cadavid4, Robert T. Naismith1

1Department of Neurology, Washington University, St. Louis, MO, USA
2University of Missouri School of Medicine, Columbia, MO, USA
3New Jersey Medical School, Newark, NJ, USA
4Biogen Idec, Cambridge, MA, USA

Background

- MS inflammatory lesions interrupt white matter tracts, resulting in impaired cognition
- Studies have identified associations between cognitive performance, cortical lesions and regional gray matter atrophy
- Longitudinal studies comparing MRI abnormalities and cognitive decline have relied upon brain MRIs acquired every 6-12 months
Hypotheses

Cognition will be more impaired in the presence of acute contrast-enhancing lesions compared to no active lesions.

Cortical atrophy over 2 years will be associated with impaired cognition.

Materials & Methods

• 75 subjects with RRMS

• MRIs were performed monthly for at least the first year of this 2-year study

• Comprehensive neurocognitive battery was administered at 0, 6, 12, and 24 months
Cognitive Sets and Represented Domains

<table>
<thead>
<tr>
<th>Set</th>
<th>Domain</th>
<th>Subtest</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) Information Processing/Memory</td>
<td>Visual Learning</td>
<td>Ruff Figural Fluency Test error ratio</td>
</tr>
<tr>
<td></td>
<td>Auditory Processing</td>
<td>PASAT</td>
</tr>
<tr>
<td></td>
<td>Verbal Learning</td>
<td>California Verbal Learning Test trials 1-5 total</td>
</tr>
<tr>
<td></td>
<td>Processing Speed</td>
<td>WAIS-III Digit Symbol</td>
</tr>
<tr>
<td>(B) Visual-Spatial/Executive Function</td>
<td>Visual-spatial</td>
<td>WMS-III Spatial Span</td>
</tr>
<tr>
<td></td>
<td>Problem Solving</td>
<td>Wisconsin Card Sorting Perservative Responses</td>
</tr>
<tr>
<td></td>
<td>Visual Scanning</td>
<td>WAIS-III Symbol Search</td>
</tr>
<tr>
<td></td>
<td>Planning/Sequencing</td>
<td>Tower of London % Planning Time (Problem solving time)</td>
</tr>
<tr>
<td></td>
<td>Visual Interference</td>
<td>Stroop Color-Word Test</td>
</tr>
<tr>
<td>(C) Verbal Memory/Attention</td>
<td>Verbal Abilities</td>
<td>WAIS-III Information Scale</td>
</tr>
<tr>
<td></td>
<td>Attention Span</td>
<td>WAIS-III Digit Span</td>
</tr>
</tbody>
</table>

Criteria for Cognitive Impairment

None
- Impairment on 0-1 Individual Tests

Mild
- Impairment on 2-3 Individual Tests
 - Significant Impairment 1/3 Sets

Moderate
- Impairment on 4-5 Individual Tests
 - Significant Impairment 2/3 Sets

Severe
- Impairment on ≥6 Individual Tests
 - Significant impairment 3/3 Sets
 - Impaired = 1 SD
 - Significant Impairment = 2 SD
• T1-weighted fat-saturated sequences acquired with Gadolinium were reviewed using Amira® imaging software.

• Maximal lesion volume (mm3) of the CEL was measured using volume rendering, indicated by the purple circle

SIENAX

• FSL program that segments various brain regions
• All brain volumes were normalized to the skull
Normalized Brain Volume Variability Over 2 years

- % change in volume over 2 years was determined

- **Categories included:**
 - Whole brain
 - White matter
 - Peripheral Grey (Cortex)
 - Ventricle

Example: Patient 16

Active Gadolinium-enhancing Lesion vs. Cognitive Impairment

- MRI scans at the time of cognitive testing were evaluated by volume of Gadolinium enhancement

- Cognitive tests were performed at 0, 6, 12, and 24 months

- MRI Gadolinium enhancement was categorized by total volume (mm3):
 1. 1.0 to 199
 2. 200 to 399
 3. 400 to 599
 4. 600 to 799
 5. 800 and above
Cognitive Performance vs. Gd Volume

- Patients with Gd enhancement at the time of cognitive testing were more likely to be impaired on information processing/memory ($p<0.01$)
 - Seen with Gd >800 mm3
 - Effect was mild impairment
 - Driven by PASAT

- No drop in performance based upon total Gd lesion volume was observed for:
 - Visual-spatial/executive
 - Verbal memory/attention

Cognitive Sets and Represented Domains

<table>
<thead>
<tr>
<th>Set</th>
<th>Domain</th>
<th>Subtest</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) Information/Processing/Memory</td>
<td>Visual Learning</td>
<td>Ruff Figural Fluency Test error ratio</td>
</tr>
<tr>
<td></td>
<td>Auditory Processing</td>
<td>PASAT</td>
</tr>
<tr>
<td></td>
<td>Verbal Learning</td>
<td>California Verbal Learning Test trials 1-5 total</td>
</tr>
<tr>
<td></td>
<td>Processing Speed</td>
<td>Digit Symbol</td>
</tr>
<tr>
<td>(B) Visual-Spatial/Executive Function</td>
<td>Visual-spatial</td>
<td>WMS-III Spatial Span</td>
</tr>
<tr>
<td></td>
<td>Problem Solving</td>
<td>Wisconsin Card Sorting Preservative Responses</td>
</tr>
<tr>
<td></td>
<td>Visual Scanning</td>
<td>WAIS-III Symbol Search</td>
</tr>
<tr>
<td></td>
<td>Planning/Sequencing</td>
<td>Tower of London % Planning Time (Problem solving time)</td>
</tr>
<tr>
<td></td>
<td>Visual Interference</td>
<td>Stroop Color-Word Test</td>
</tr>
<tr>
<td>(C) Verbal Memory/Attention</td>
<td>Verbal Abilities</td>
<td>WAIS-III Information Scale</td>
</tr>
<tr>
<td></td>
<td>Attention Span</td>
<td>WAIS-III Digit Span</td>
</tr>
</tbody>
</table>
Ventricular Enlargement and White Matter Loss
vs.
Gadolinium-enhancing lesion volume

Gadolinium Enhancing Lesion Volume vs. Normalized Ventricle Volume

• Gd lesion volume at baseline was predictive of 2-year % increase in ventricular volume ($p < 0.01$)
Gadolinium Enhancing Lesion Volume vs. Normalized White Matter

- Gd lesion volume at baseline was predictive of 2-year % change in white matter volume ($p < 0.05$)

Gd volume at baseline vs. 2-year % change in whole brain and peripheral grey (cortex)

- No significant relationship was found between Gd volume at baseline vs. 2-year % change whole brain

- No significant relationship was found between Gd volume at baseline vs. 2-year % change peripheral grey (cortex)
Ventricular and White Matter Volume % Change vs. Cognitive Impairment

- Increases in ventricular volume over 2 years was correlated with deficits in:
 1. Information processing and memory at 24 months**
 2. Overall cognitive impairment at 24 months*

- Decreases in white matter volume over 2 years was correlated with deficits in:
 1. Overall cognitive impairment at 24 months*

*p < 0.05, **p < 0.01

Conclusions

- Processing speed may be mildly impacted when active lesion volume is high in this early MS cohort

- Gd lesion volume at baseline predicted ventricular and white matter atrophy over 2 years

- Two year cognitive impairment was related to ventricular and white matter atrophy over 2 years

- Of the cognitive sets, information processing speed seemed most associated with some MRI changes

- In this dataset, cortical volumes did not appear to be predictive of cognition over 2 years
Future Directions

• The majority of this early MS cohort showed mild to no impairment during cognitive testing over 2 years

• Thus, a 10-year follow-up assessment could demonstrate additional correlations between volume change and cognitive performance as a result of disease progression

Acknowledgements

• Dr. Robert T. Naismith, Research Mentor
• Samantha Lancia, Patient Coordinator
• Gautam Adusumilli and Zach Goodman, Research Assistants
• CSMC Foundation for Summer Scholarship and Travel Funds for Meeting
• National MS Society for funding these additional BECOME analyses and the 10 year follow-up study
• Bayer Healthcare for collecting the original data and allowing for its continued use
References

8. Structural Segmentation:
 http://fsl.fmrib.ox.ac.uk/fslcourse/lectures/struc_seg.pdf

![Table 1](image-url)