

Vitamin D deficiency as a predictor of Multiple Sclerosis cognitive impairment

Hoffnung, G.¹, Archetti, R.¹, Glukhovsky, L.¹, Picone, M. A.³, Youn, C. L.², Foley, F. W.^{1,3}

¹Ferkauf Graduate School of Psychology, Yeshiva University, Bronx, NY, United States,

²Touro College School of Osteopathic Medicine , New York, NY, ³Holy Name Medical Center, MS Center, Teaneck, NJ, US

ABSTRACT

- *Objectives:* To test for a possible relationship between MS cognitive impairment and Vitamin D deficiency within a small data set as a pilot for a larger prospective study to be conducted.
- *Hypotheses:* Vitamin D deficient individuals with MS will experience greater cognitive impairment than those that are not deficient.
- Methods: Analysis was performed on a subset (n=22) of MS patients from a large database which is part of an ongoing study of MS cognitive function at the Comprehensive MS Center at Holy Name Medical Center in Teaneck, NJ. All patients were given a battery of neurocognitive tests, (MACFIMS battery) and data was analyzed for those patients with available Vitamin D levels measured within 6-months of cognitive testing. To achieve maximally significant results both cognitive function and Vitamin D levels were simplified to discrete binary variables (cognition: impaired/unimpaired based on the Benedict criteria for the MACFIMS; Vitamin D: deficient/ not deficient with a level of ≤ 30 ng/ml considered as deficiency). Cognitive impairment was measured both as an overall score and according to discrete functional domains. Spearman Rank Order Correlations (rho) were run to determine correlation.
- **Results:** There were no significant correlations observed between Vitamin D deficiency and cognitive impairment both when considered as a general construct and as discrete functional domains. The strongest correlation observed was that of Vitamin D and executive function (rho=.369) which trended toward significance (p=.110) even in this small sample.
- *Conclusions:* The sample analyzed was too small to determine any relationship between vitamin D deficiency and MS cognitive impairment. Data suggest that when conducting a more complete study attention should be given to discrete domains of cognitive function and particularly to executive functions when determining correlation with Vitamin D deficiency.

BACKGROUND

Vitamin D has become increasingly relevant within the MS literature in recent years as low levels of vitamin D have been shown to predict MS relapses and correlate with overall disease worsening [2]. Vitamin D interacts with disease progression by functions of cell growth suppression and can impact the treatment of a disease through inducing, enhancing, or suppressing an immune response . [1] Cognitive impairment is a common and debilitating MS symptom as well as an important indicator of general disease state. It is not known whether a relationship exists between vitamin D deficiency and MS cognitive impairment.

METHODS

SAMPLE: Data was collected from 22 MS patients referred for neuropsychological testing at the MS Center at Holy Name Medical Center. Individuals were included based on availability of Vitamin D levels measured within 6 months of cognitive testing.

MATERIALS: Minimal Assessment of Cognitive Function in Multiple Sclerosis (MACFIMS) battery [1]; administered to determine the presence of cognitive impairment, which was defined according to Benedict's criteria of scoring of the MACFIMS. Data was simplified then analyzed using discrete binary variables: impaired/unimpaired.

Vitamin D Levels [2]: vitamin D measurements were considered deficient at a level of ≤ 30 ng/ml. All measurements above the cutoff were defined as not deficient.

STATISTICAL ANALYSES: Pearson Correlations using SPSS 22 were run to analyze whether vitamin D levels were correlated with cognitive impairment as determined by the MACFIMS battery, which included 11 functional measures of impairment.

	RESULTS														
	Correlations														
		Vitamin D Deficiency (below 30)	COWAT z score 1.5 SD below the mean	JOL Percentile below 7		CVLT delayed recall (long) score below 1.5 SD	BVMT Total Learning T score 1.5 SD Below	BVMT Delayed Recall T score 1.5 SD Below	PASAT 3 second Scores Below -1.5 SD	PASAT 2 Second Score 1.5 SD Below	SDMT z Score below 1.5 SD		DEKEFS Sorting description scaled score 5 or below		
Vitamin D Deficiency (below 30)	Pearson Correlation	1	097	.158	.261	017	231	069	.122	.113	.083	.369	.369	.059	
	Sig. (2- tailed)		.668	.481	.241	.941	.341	.779	.599	.625	.712	.110	.110	.793	
	N	22	22	22	22	22	19	19	21	21	22	20	20	22	
	CONCLUSIONS														

Analyses on this sample did not detect a significant relationship between vitamin D deficiency and MS cognitive impairment.

• There was not sufficient power to detect an effect, however, the analyses showed a trend regarding the relationship between MS vitamin D levels and executive functioning.

• A larger prospective study may yield more significant results, with specific focus on executive functioning as it relates to MS cognitive impairment

REFERENCES

1. Antico, A., Tampoia, M., Tozzoli, R., Bizzaro, N. (2010). Can supplementation with vitamin D reduce the risk or modify the course of autoimmune diseases? A systematic review of the literature. Autoimmunity Reviews, 12(2) pp. 127-136.

 Mowry, E.M., Waubant, E., McCulloch, C.E., Okuda, D.T., Evangelista, A.A., Lincoln, R.R., Gourraud, P.A., Brenneman, D., Owen, M.C., Qualley, P., Bucci, M., Hauser, S., Pelletier, D. (2012). Vitamin D status predicts new brain magnetic resonance imaging activity in multiple sclerosis. *Annals of Neurology*, 72(2), pp. 234-240.