

Comparison of ActiGraph, Fitbit and Manual Step Count During a Two-Minute Walk Test in People with Multiple Sclerosis: A Pilot Study

V Block, PT, DPTSc (c),¹ A Lizée, MSc,² E Crabtree, MD,² C Bevan, MD,² J Graves, MD, PhD,² M Tremblay, MD, PhD,² B Nourbakhsh, MD,² A Green, MD, MCR,² M Pletcher, MD, MPH,³ B Cree, MD, PhD, MAS,² DD Allen, PT, PhD,¹ JM Gelfand, MD²

(1) University of California San Francisco / San Francisco State University: Graduate Program in Physical Therapy; (2) University of California San Francisco: School of Medicine, Clinical Neurology; (3) University of California, San Francisco: School of Medicine, Epidemiology and Biostatistics

Background:

- Multiple sclerosis (MS) commonly leads to impairments in gait
- Remote physical activity monitoring in the patient's natural environment has the potential to augment measurement of MS-related disability and disease progression and might have prognostic value.
- Neurological disability may influence the fidelity of step count monitoring

Objective:

Compare remote physical activity monitoring using commercially available devices in people with MS with a broad range of ambulatory impairments.

Methods:

Subjects:

• 61 adults with MS at UCSF MS Center.

Exclusion criteria:

• Recent clinical relapse (≤30 days), physical comorbidities that could contribute to gait impairment and confound results.

Measures of step count during 2-minute walk (2MW):

- Fitbit Flex®
- Research-grade accelerometer (ActiGraph)
- Manual step counting (by a physical therapist)

Table 1: Participant Demographic Data

	All	Progressive	Relapsing
N	61	19	42
Age (y)*	50 (14.4)	58.5 (8.4)	46.3 (15.0)
EDSS †	4.0 (0-6.5)	6.0 (3.0-6.5)	2.8 (0-6.0)
DD (y)†	10 (4-21)	15 (8-20)	9 (4-22)

^{*} Mean (standard deviation); † median (range) EDSS = Kurtzke Expanded Disability Status Scale; DD = disease duration

Fitbit Flex®

ActiGraph GT3X

Manual Counting

Results:

Bland- Altman plots showed:

- No systematic difference between the number of steps measured by Fitbit vs.
 manual counts (across the range of step counts).
- ActiGraph measurements tended to *under-record actual steps taken* at slower gait speeds.
- Interclass correlation coefficients (ICC) comparing total step counts across methods during the 2MW revealed moderate correlations.

Bland- Altman Plots Comparing the Step Count Measuring Techniques

Table 2: Interclass Correlation Coefficients

Step Count Measures	Fitbit vs. manual	Fitbit vs. ActiGraph	ActiGraph vs. manual
ICC (95% CI)	0.69 (0.53 - 0.80)	0.59 (0.40 – 0.73)	0.76 (0.63 - 0.85)

Discussion:

- Wrist-worn commercial accelerometers (Fitbit® Flex) appear to provide a valid alternative to more expensive, research grade accelerometers for determining step count in people with MS, particularly at slower gait speeds.
- Further study is ongoing in the community setting to evaluate associations with longer-term patterns of neurological impairment and gait abnormalities.

Acknowledgement: The FITriMS study is a sub-study of the UCSF Health e-Heart study. Research reported in this publication was supported by the National Center for Advancing Translational Sciences of the NIH under Award Number KL2TR000143 (JMG).