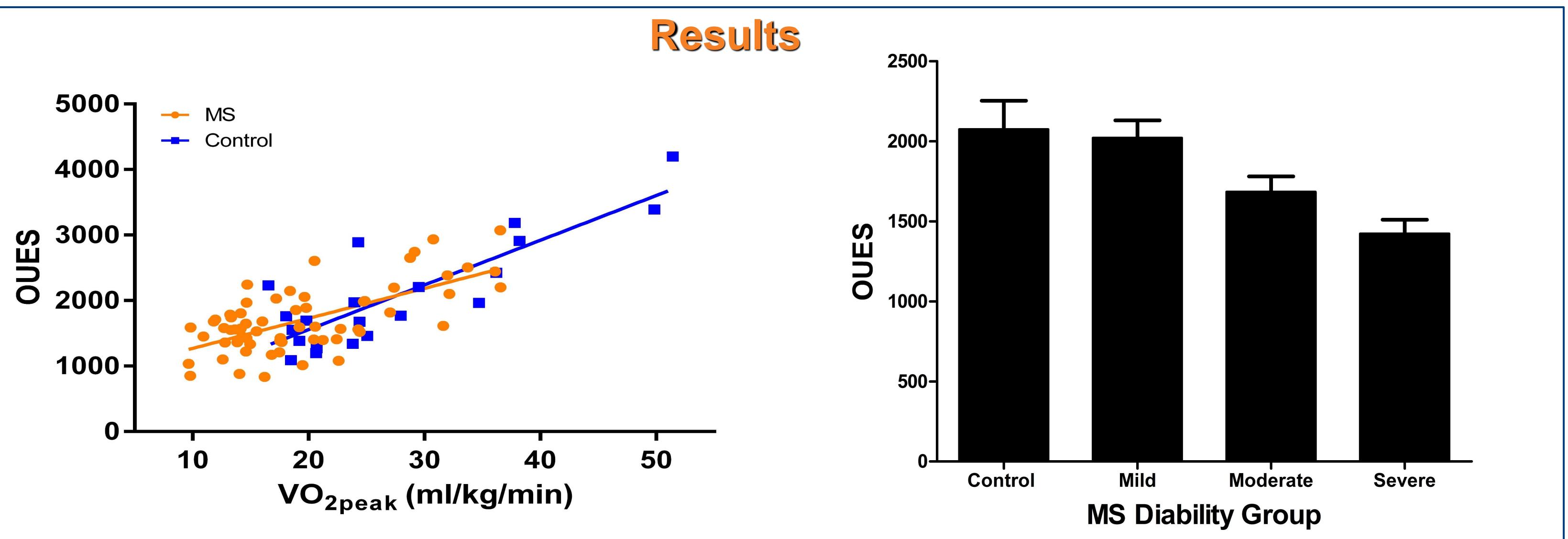


Introduction

- Exercise training is an effective method for improving physical and mental health for people with multiple sclerosis (MS).
- One important benefit of exercise training is improved cardiorespiratory fitness (CRF), an important indicator of health status across populations.
- Persons with MS have lower CRF levels compared to healthy matched controls, presumably because of deconditioning.
- The gold standard for evaluating CRF is the cardiopulmonary exercise test (CPET) performed to volitional fatigue/exhaustion, and peak oxygen consumption (VO_{2peak}).
- Maximal exercise may not be viable due to limitations associated with MS.
- Alternatively, an objective and effortindependent measure of CRF may be the oxygen uptake efficiency slope (OUES).

Purpose


To examine:

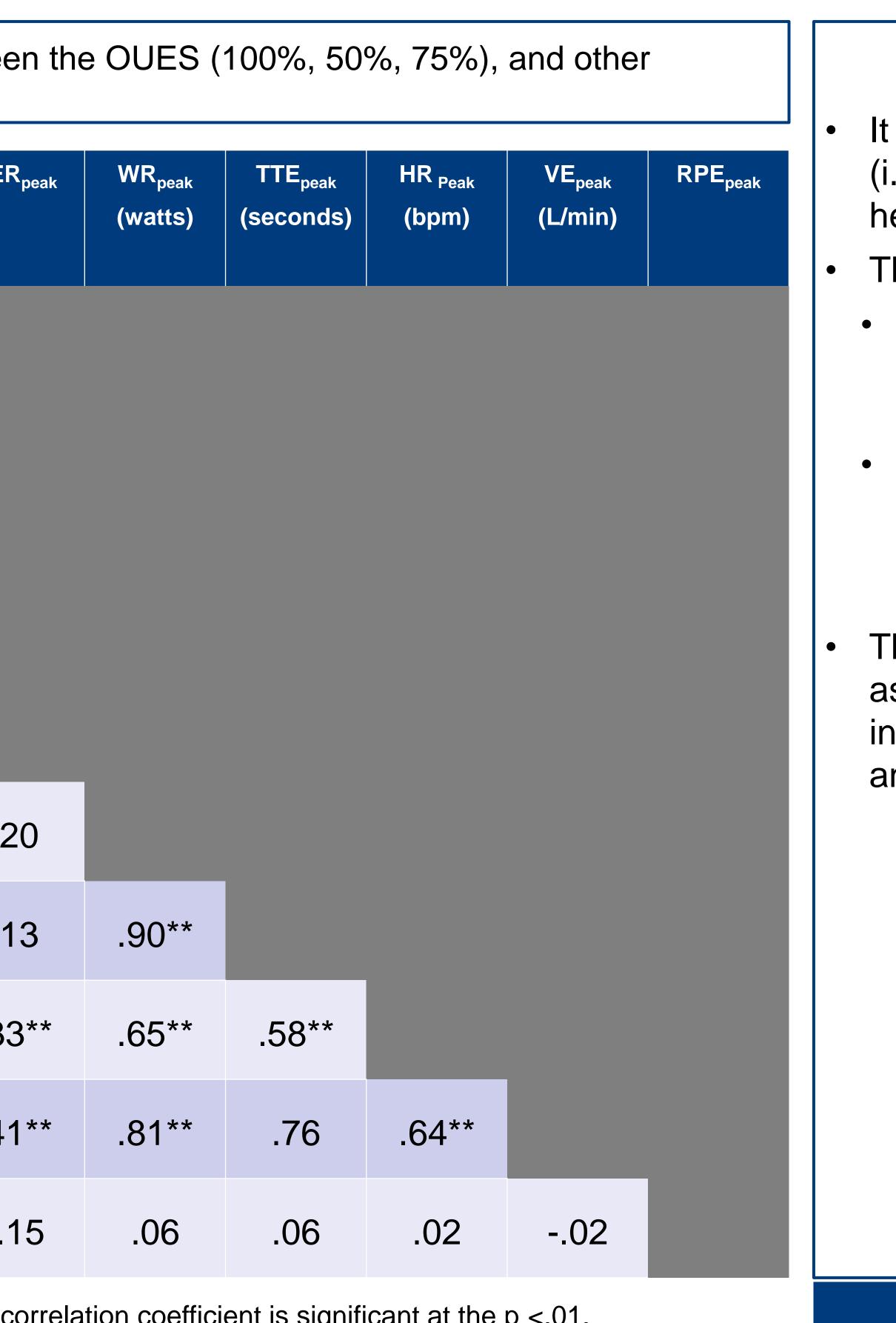
- Differences in the OUES between а. persons with MS and matched controls.
- Differences in the OUES across the MS b. disability spectrum.
- The relationship between the OUES and С. other CPET outcomes (VO_{2peak}, WR_{peak}, TTE_{peak} , HR_{peak} and VE_{peak}).

Methods

- 62 participants with MS and 21 non-MS controls matched on age, sex, height and weight completed a symptom-limited CPET using a recumbent stepper and an open-circuit spirometry system.
- Through log-transformation of the VE, a linear relationship between log VE and VO₂ was established:
 - $VO_2 = \alpha \times log_{10} VE + \beta$
- The slope (α) represents the OUES, a measure of the efficiency of oxygen uptake with increasing VE.
- OUES50 and OUES75 were calculated using 50% and 75% of the CPET data respectively.

Thomas Edwards¹, Rachel E. Klaren¹, Robert W. Motl¹, and Lara A. Pilutti¹ ¹Department of Kinesiology and Community Health, University of Illinois Urbana-Champaign

Figure 1: Relationship between the OUES values and VO_{2peak} for the MS and control samples.


Table 1: Bivariate Pearson's correlation coefficients between the OUES (100%, 50%, 75%), and other CPET variables, for the MS sample overall (n=62).

	OUES	OUES50	OUES75	VO _{2peak} (ml/kg/min)	RE
OUES					
OUES50	.86**				
OUES75	.95**	.94**			
VO _{2peak} (ml/kg/min)	.66**	.47**	.57**		
RER _{peak}	06	15	06	.36**	
WR _{peak}	.78**	.61**	.72**	.85**	. 2
TTE _{peak} (seconds)	.74**	.53**	.66**	.75**	
HR _{peak} (bpm)	.57**	.39**	.52**	.69**	.3
VE _{peak} (L/min)	.72**	.58**	.69**	.78**	.4
RPE _{peak}	06	11	10	17	'

*Denotes correlation coefficient is significant at p < .05 level; **Denotes correlation coefficient is significant at the p < .01.

Oxygen Uptake Efficiency Slope Across the Disability Spectrum in Multiple Sclerosis

Figure 2: Comparison of the OUES values across the MS disability spectrum and controls.

Conclusions

It was determined that the OUES is flatter (i.e., lower) in persons with MS compared to healthy controls.

The OUES decreased as disability increased.

- These findings are not surprising and are likely related to inactivity induced deconditioning associated with MS.
- Such deconditioning impacts the cardiovascular, respiratory, and musculoskeletal systems, all of which contribute to the OUES.

• The OUES (in MS) was significantly associated with other CPET variables including VO_{2peak}, WR_{peak}, TTE_{peak}, HR_{peak} and VE_{peak}.

- These association were also present when comparing submaximal OUES50 and OUES75.
- Since the OUES can be determined via submaximal exercise it represents a promising alternative as a measure of CRF in clinical populations.
- This has important implications for the evaluation and monitoring of CRF in persons with MS.