Correlation of clinical, MRI, and OCT outcomes in the 11-year follow-up from BENEFIT: BENEFIT 11

Introduction

- Approximately 85% of patients with multiple sclerosis (MS) present with a single demyelinating episode known as a clinically isolated syndrome (CIS)¹
- Disease-modifying therapies (DMTs) for patients with CIS may delay conversion to clinically definite MS (CDMS) and improve clinical outcomes²⁻⁴
- Patients with CIS who had early treatment with interferon beta-1b in the BENEFIT trial maintained an overall favorable disease course, with some clinical differences that favored treatment start at CIS, including lower annualized relapse rate (ARR), higher Paced Auditory Serial Addition Task (PASAT) score, and longer time to CDMS⁵
- The 11-year follow-up from this trial provides an opportunity to assess the relationship between longterm clinical outcomes and structural assessments by magnetic resonance imaging (MRI) and optical coherence tomography (OCT)
- The objective of this analysis was to assess correlations between clinical, MRI, and OCT outcomes over 11 years

Methods

- Patients with CIS who had ≥ 2 clinically silent brain lesions on MRI were randomized to interferon beta-1b 250 µg (early treatment) or placebo (delayed treatment) subcutaneously every other day
- Patients remained on placebo until conversion to CDMS or for 2 years, whichever occurred first
- 11 years after initial randomization, all patients were approached to undergo cross-sectional follow-up that included clinical, MRI, and OCT assessment
- Cross-sectional MRI was conducted using blinded central reading of 1.5 or 3-T scans for assessments including (but not limited to) number and volume of T1, T2, and gadolinium-enhancing (Gd+) lesions, cortical thickness and number of cortical lesions, normalized thalamic volume, normalized brain volume, and mean upper cervical cord area (MUCCA)
- OCT analysis was conducted at those sites with Heidelberg SPECTRALIS[®] OCT instruments and Nsite[®] Analytics[™] for SPECTRALIS[®]
- o Readings were completed by a central reading site
- o Assessments included peripapillary global retinal nerve fiber layer (G-RNFL) thickness, total macular volume (TMV), macular ganglion cell inner plexiform layer (GCIP) thickness, and papillomacular bundleretinal nerve fiber layer (PMB-RNFL) thickness
- Correlations of clinical parameters with MRI and OCT at Year 11 were assessed with Kendall's tau or Spearman's rank coefficients
- Clinical parameters included ARR, Expanded Disability Status Scale (EDSS), Kurtzke Functional Status Scale (KFSS), Multiple Sclerosis Functional Composite (MSFC), PASAT score, and Symbol-Digit Modality Test (SDMT)

 Correlation was also assessed between mental processing speed (the sum of the *z* scores for PASAT and SDMT adjusted for education status, age, and sex) and selected MRI parameters

Results

Patient disposition

- cohort)
- 2 patients missing data), respectively
- Little difference between the early and delayed in the early and 2.0 (1.0-6.0) in the delayed group
- [1.02, 1.03], P < 0.0001)

able 1. MRI assessments at Year 11

	Early	treatment	Delaye	ed treatment	Total BENEFIT 11 population		
	Mean (SD)	Median (Q1-Q3)	Mean (SD)	Median (Q1-Q3)	Mean (SD)	Median (Q1-Q3)	
Hypointense lesions on T1, n	7.1 (8.9)	4.0 (1.0-11.0)	4.7 (6.6)	2.0 (1.0-6.0)	6.2 (8.2)	3.0 (1.0-9.0)	
Volume of hypointense T1 lesions, mm ³	1044.8 (2294.8)	234.5 (34.0-1042.5)	470.9 (742.5)	189.0 (30.0-566.0)	814.7 (1855.1)	215.0 (31.0-887.0)	
New lesions on T2, n ^a	6.0 (11.4)	2.0 (0.0-6.0)	4.9 (8.0)	2.0 (0.0-6.5)	5.6 (10.2)	2.0 (0.0-6.0)	
Volume of hyperintense lesions on T2, mm ³	4232.9 (5920.4)	2237.0 (618.0-5473.0)	3139.9 (4447.5)	1640.5 (911.0-3419.0)	3793.4 (5390.9)	1760.0 (775.0-4738.0)	
Cortical lesions, n	3.6 (4.4)	2.0 (0.0-5.0)	3.4 (4.7)	1.5 (0.0-4.0)	3.5 (4.5)	2.0 (0.0-5.0)	
Mean cortical thickness, mm	2.689 (0.360)	2.625 (2.420-2.980)	2.747 (0.390)	2.660 (2.420-3.070)	2.713 (0.373)	2.640 (2.420-2.980)	
Normalized brain volume, cm ³	1496.6 (135.4)	1527.0 (1444.0-1595.0)	1502.1 (114.2)	1514.0 (1429.0`-1575.5)	1498.7 (127.2)	1519.0 (1433.0-1585.0)	
Normalized thalamic volume, mm ³	9321.6 (1796.5)	9839.0 (8801.0-10603.5)	9097.0 (2160.0)	9613.0 (8433.0-10462.0)	9233.2 (1944.7)	9752.0 (8639.0-10477.0)	
MUCCA, mm ²	76.75 (8.69)	76.35 (71.30-81.10)	78.08 (9.75)	77.20 (73.30-84.50)	77.28 (9.13)	76.60 (72.00-83.00)	

^aT2 lesions new since MRI assessment at Year 5. MRI, magnetic resonance imaging; MUCCA, mean upper cervical cord area.

Table 2. OCT assessments at Year 11 (median [01, 03])

	Early tre	eatment	Delayed t	reatment	Overall		
	Left eye	Right eye	Left eye	Right eye	Left eye	Right eye	
G-RNFL (12°), μm	92.0	95.0	90.0	89.0	91.5	93.0	
	(83.0 <i>,</i> 100.0)	(85.0 <i>,</i> 100.0)	(82.0, 101.0)	(79.0 <i>,</i> 101.0)	(83.0 <i>,</i> 101.0)	(85.0 <i>,</i> 100.0)	
GCIP, μm	80.0	80.0	80.0	78.0	80.0	79.5	
	(72.5 <i>,</i> 85.5)	(72.0 <i>,</i> 86.0)	(69.0 <i>,</i> 85.0)	(71.0 <i>,</i> 84.0)	(71.0 <i>,</i> 85.0)	(72.0 <i>,</i> 85.0)	
TMV, mm ³	8.47	8.37	8.46	8.37	8.47	8.37	
	(8.07 <i>,</i> 8.82)	(8.07 <i>,</i> 8.75)	(7.96 <i>,</i> 8.75)	(8.14 <i>,</i> 8.72)	(8.03 <i>,</i> 8.82)	(8.10 <i>,</i> 8.75)	
PMB-RNFL (12°), μm	46.0	48.0	47.5	51.0	46.5	49.0	
	(38.0, 50.0)	(40.0 <i>,</i> 55.0)	(39.0, 53.0)	(37.0, 56.0)	(39.0 <i>,</i> 51.5)	(39.5, 55.5)	

G-RNFL, global retinal nerve fiber layer; GCIP, ganglion cell inner plexiform layer; OCT, optical coherence tomography; PMB-RNFL, papillomacular bundle-retinal nerve fiber layer; TMV, total macular volume.

• Of the 468 patients originally randomized, 278 (71.3% of patients at participating centers) participated in BENEFIT 11 – Early treatment: 167 patients (57.2% of the original cohort) – Delayed treatment: 111 patients (63.1% of the original

• Year 11 MRI (Table 1) and OCT (Table 2) assessments were conducted in 191 patients (68.7%) and 86 patients (30.9%,

treatment groups with regard to MRI and OCT findings was noted with the exception of a difference in median (Q1-Q3) number of T1-hypointense lesions: 4.0 (1.0-11.0)

o A negative binomial regression model adjusted for T2 hyperintense lesions at screening showed that the numerical difference in number of T1-hypointense lesions at Year 11 was driven by the imbalance in T2 lesion number at screening (risk ratio [95% CI] 1.02

MRI correlations

- MRI correlations are shown in Table 3
- Significant positive correlations in the overall BENEFIT 11 population were observed between:
- ARR and volume of T1 lesions (r = 0.212)
- ARR and volume of T2 lesions (r = 0.216)
- Expanded Disability Status Scale (EDSS) score and T1 hypointensity volume (r = 0.281)
- EDSS and T2 volume (r = 0.244)
- Significant negative correlations in the overall BENEFIT 11 population were observed between:
- ARR and MUCCA (r = -0.208)
- EDSS and MUCCA (r = -0.194)
- MSFC and T1 lesion volume (r = -0.183) and T2 lesion volume (r = -0.213)
- Mental processing speed correlated negatively with number of T1 lesions (r = -0.176) (Table 4)

Table 3. Correlations of Wiki and clinical parameters at rear 11									
	EDSS r P value		ARR r P value		MSFC r P value		PASAT r Pvalue		
Mean cortical thickness, mm	-0.013	NS	-0.002	NS	-0.007	NS	-0.086	NS	
Normalized thalamic	-0.129	NS	-0.125	NS	0.139	NS	0.103	NS	
volume, mm ³									
MUCCA, mm ²	-0.194	.0137	-0.208	.0083	0.031	NS	0.049	NS	
T1 lesion volume, mm ³	0.281	.0003	0.212	.0069	-0.183	.0267	-0.123	NS	
T2 lesion volume, mm ³	0.244	.0018	0.216	.0058	-0.213	.0094	-0.149	NS	

ARR, annualized relapse rate: EDSS, Expanded Disability Status Scale: MSFC, Multiple Sclerosis Functional Composite; MUCCA, mean upper cervical cord area; NS, not significant; PASAT, Paced Auditory Serial Addition Task.

Statistically significant correlations are shown in **bold**.

Table 4. Correlations of MRI parameters with mental processing speed at Year 1

	Early Tr	Early Treatment		Treatment	Overall	
	r	<i>P</i> value	r	<i>P</i> value	r	<i>P</i> value
T1 lesion number	-0.054	NS	-0.355	.0057	-0.176	.0355
Cortical lesion number	0.017	NS	-0.415	.0011	-0.153	NS
T1 hypointense lesions volume, mm ³	-0.061	NS	-0.320	.0135	-0.164	NS
Normalized brain volume, cm ³	0.037	NS	0.137	NS	0.074	NS
Mean cortical thickness, mm	-0.050	NS	0.295	.0233	0.096	NS
Normalized thalamic volume, mm ³	0.025	NS	0.194	NS	0.094	NS
Mean upper spinal cord area, mm ²	0.125	NS	0.225	NS	0.143	NS

NS, not significant.

Statistically significant correlations are shown in **bold**.

✓ Edward J. Fox,¹ Gilles Edan,² Mark S. Freedman,³ Xavier Montalbán,⁴ Hans-Peter Hartung,⁵ Bernhard Hemmer,^{6,7} Frederik Barkhof,⁸ Sven Schippling,⁹ Fred W. Foley,¹⁰ Iris K. Penner,¹¹ Ralf Koelbach,¹² Dirk Pleimes,¹³ Gustavo Suarez,¹⁴ Eva-Maria Wicklein,¹⁵ Ludwig Kappos,¹⁶ for the BENEFIT Study Group

OCT correlations

- OCT correlations are shown in Table 5
- Significant positive correlations in the BENEFIT 11 population were observed between:
- PASAT and minimum G-RNFL thickness (r = 0.271)
- Significant negative correlations in the BENEFIT 11 population were observed between:
- ARR and minimum G-RNFL thickness (r = -0.233) and PMB-RNFL thickness (r = -0.239)
- T1 lesion volume and minimum G-RNFL thickness (r = -0.255) and PMB-RNFL (r = -0.340)- T2 lesion volume and G-RNFL (r = -0.307) and PMB-RNFL (r = -0.392)
- No significant correlations were found between OCT parameters and EDSS, KFSS, MSFC, SDMT, normalized brain volume, mean cortical thickness, normalized thalamic volume, or visual acuity (either eye)

Table 5. Correlations of OCT and clinical and MRI parameters

	GCIP		G-RNFL (12°)		PMB-RNFL (12°)		TMV	
	r	<i>P</i> value	r	<i>P</i> value	r	<i>P</i> value	r	P value
EDSS	-0.127	NS	-0.081	NS	-0.202	NS	-0.185	NS
MSFC	0.056	NS	0.105	NS	0.182	NS	0.202	NS
ARR	-0.159	NS	-0.233	.0396	-0.239	.0347	-0.134	NS
PASAT	0.141	NS	0.271	.0197	0.226	NS	0.219	NS
SDMT	0.083	NS	0.037	NS	0.076	NS	0.170	NS
KFSS	-0.109	NS	-0.155	NS	-0.138	NS	-0.088	NS
T1 lesion volume	-0.166	NS	-0.255	.0422	-0.340	.0059	-0.188	NS
T2 lesion volume	-0.191	NS	-0.307	.0136	-0.392	.0014	-0.176	NS
Normalized brain volume	0.085	NS	0.039	NS	0.214	NS	0.045	NS
Mean cortical thickness	0.044	NS	-0.152	NS	0.098	NS	-0.108	NS
Normalized thalamic volume	0.135	NS	0.187	NS	0.151	NS	0.090	NS
Visual acuity, right eye	0.145	NS	0.025	NS	0.142	NS	0.050	NS
Visual acuity, left eye	-0.020	NS	-0.032	NS	0.020	NS	-0.009	NS

ARR, annualized relapse rate; EDSS, Expanded Disability Status Scale; G-RNFL, global retinal nerve fiber layer; GCIP, ganglion cell inner plexiform layer; KFSS, Kurtzke Functional Status Scale; MRI, magnetic resonance MSFC, Multiple Sclerosis Functional Composite; NS, not significant; OCT, optical coherence r: PASAT, Paced Serial Auditory Addition Task: PMB-RNFL, papillomacular bundle-retinal nerve fiber laver: SDMT: Symbol-Digit Modality Task: TMV, total macular volume. Statistically significant correlations are shown in **bold**.

Discussion

- Results from BENEFIT 11 confirmed the relationship
- EDSS and ARR
- MRI activity for assessing disease status
- All correlations identified were somewhat weak (r < 0.4) These findings highlight the importance of monitoring
- Cognition, as measured by mental processing speed, was related to lesion number
- processing speed and MRI could be undertaken by assessing the effects of lesions in specific brain regions
- Further exploration of the relationship between • Results also indicated that patients with more active disease tended to have smaller cervical spinal cord volumes
- This measure is thought to reflect the neurodegenerative aspects of MS and was shown to be related to measures of disease severity in a cohort of patients with RRMS⁶

Conclusion

• Long-term follow up from the BENEFIT trial confirmed the relationship between MRI metrics and disease outcomes after 11 years, particularly with regard to lesion activity and MUCCA

References

- . Miller D, Barkhof F, Montalban X, Thompson A, Filippi M. Clinically
- 2. Comi G, De Stefano N,, Freedman MS, et al. Comparison of two dosing frequencies of subcutaneous interferon beta-1a in patients with a first clinical demyelinating event suggestive of multiple sclerosis (REFLEX): a phase 3 randomised controlled trial. Lancet Neurol. 2012;11(1):33-41.
- 3. Kappos L, Polman CH, Freedman MS, et al. Treatment with interferon beta-1b delays conversion to clinically definite and McDonald MS in patients with clinically isolated syndromes. *Neurology*. 2006;67(7):1242-1249.
- 4. Kinkel RP, Dontchev M, Kollman C, Skaramagas TT, O'Connor PW, Simon JH. Association between immediate initiation of intramuscular interferon beta-1a at the time of a clinically isolated syndrome and long-term outcomes: a 10-year follow-up of the Controlled High-Risk Avonex Multiple Sclerosis Prevention Study in Ongoing Neurological Surveillance. Arch Neurol. 2012;69(2):183-190.
- 5. Kappos LK, Edan G, Freedman MS, et al. The 11-year long-term follow-up study from the randomized BENEFIT CIS trial. In Press. *Neurology.*
- 6. Daams M, Weiler F, Steenwijk MD, et al. Mean upper cervical cord area (MUCCA) measurement in long-standing multiple sclerosis: relation to brain findings and clinical disability. *Mult Scler.* 2014;20(14):1860-1865.

Study supported by Bayer HealthCare Pharmaceuticals, Inc, Whippany, New Jersey, United States. Presented at the Annual Meeting of the Consortium of Multiple Sclerosis Centers; June 1-4, 2016; National Harbor, Maryland

- ¹Central Texas Neurology Consultants, Round Rock, Texas, United States
- ²CHU Hopital Pontchaillou, Rennes, France ³University of Ottawa and Ottawa Hospital Research Institute, Ottawa, Canada
- ⁴Hospital Universitari Vall d'Hebron, Barcelona, Spain ⁵Department of Neurology, Medical Faculty, Heinrich-Heine Universität, Düsseldorf, Germany
- ⁶Technische Universität München, Munich, Germany ⁷Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- ⁸VU University Medical Center, Amsterdam, The Netherlands ⁹University Hospital Zurich, Zurich, Switzerland
- ¹⁰School of Psychology, Yeshiya University, New York, United States ¹¹COGITO Center for Applied Neurocognition and Neuropsychological Research, Düsseldorf, Germany ¹²PAREXEL International, Berlin, Germany

between MRI measures of disease and long-term outcomes – Significant correlations of lesion volume with EDSS, ARR, and MSFC as well as with minimum G-RNFL and PMB-RNFL were found, while MUCCA significantly correlated with

isolated syndromes suggestive of multiple sclerosis, part I: natural history, pathogenesis, diagnosis, and prognosis. *Lancet Neurol.* 2005;4(5):281-288.

Disclosures

- EJ Fox has received consulting fees, honoraria, travel, or research support from Acorda, Bayer, Biogen Idec, Eli Lilly, EMD Serono, Genzyme, GlaxoSmithKline, Novartis, Ono, Opexa Therapeutics, Pfizer, Roche, Sanofi, and Teva.
- G Edan has received honoraria for lectures or consulting from Biogen Idec, Merck Serono, and Sanofi-Aventis, and received personal compensation for serving on the BENEFIT scientific advisory board and for speaking from Bayer Pharma AG. He has also received research support from Serono (a grant to University Hospital to support a research program on MRI in MS) and from Teva (a grant to support a research program on anti-IBF neutralizing antibodies).
- MS Freedman has received compensation from Actelion, Bayer Healthcare, Biogen Idec, Chugai, EMD Canada, Genzyme, Merck Serono, Novartis, Roche Canada, Sanofi-Aventis, and Teva Canada Innovation for consulting services. He also participates in a Genzyme-sponsored speakers bureau.
- X Montalbán has received speaking honoraria and travel expenses for scientific meetings and has been a steering committee member of clinical trials or participated in advisory boards of clinical trials in the past years with Bayer, Biogen Idec, EMD, Genentech, Genzyme, Merck Serono, Neuro-Tec, Novartis, Sanofi-Aventis, Teva Pharmaceuticals, and Almirall.
- H-P Hartung has received honoraria for consulting and speaking at symposia from Bayer Pharma AG, Biogen Idec, GeNeuro, Genzyme, MedImmune, Merck Serono, Novartis, Opexa, Receptos, Roche, Teva, and Sanofi-Aventis, with approval by the Rector of Heinrich-Heine University.
- B Hemmer has served on scientific advisory boards for Roche, Novartis, Bayer Schering, and Genentech; has received speaker honoraria from Biogen Idec and Roche; and has received research support from Chugai Pharmaceuticals. He holds part of a patent for the detection of antibodies and T cells against KIR4.1 in a subpopulation of MS patients and genetic determinants of neutralizing antibodies to interferon-beta.
- F Barkhof has received compensation for consultancy from Bayer Schering Pharma, Biogen Idec, Merck Serono, Novartis, Sanofi-Aventis, Genzyme, Roche, and Teva, and has received research support from the Dutch Foundation for MS research (an NGO).
- S Schippling has received research grants from Biogen Idec, Bayer Schering Pharma, and Genzyme, and consulting/speaker fees from Bayer Schering Pharma, Biogen Idec, Merck Serono, Novartis, Teva, and Sanofi-Aventis.
- FW Foley has received compensation for consulting with Biogen Idec and Bayer HealthCare Pharmaceuticals.
- IK Penner has received honoraria for speaking at scientific meetings, serving at scientific advisory boards and consulting activities from Actelion, Bayer-Schering, Biogen Nordic, Merck Serono, Novartis, Roche, Teva, Sanofi-Aventis.
- R Koelbach is a salaried employee of PAREXEL International.
- D Pleimes is a salaried employee of Myelo Therapeutics GmbH. He was a salaried employee and is currently a paid consultant for Bayer Pharma AG/ Bayer HealthCare Pharmaceuticals. DP owns stock in Bayer AG, the owner of Bayer Pharma AG/Bayer HealthCare Pharmaceuticals.
- G Suarez was a salaried employee of Bayer Pharma AG/Bayer HealthCare Pharmaceuticals at the time this work was conducted.
- EM Wicklein is salaried employee of Bayer Pharma AG.
- L Kappos' institution, (University Hospital Basel) received in the last 3 years and used exclusively for research support: steering committee/consulting fees from Actelion, Addex, Bayer HealthCare, Biogen, Biotica, Genzyme, Lilly, Merck, Mitsubishi, Novartis, Ono, Pfizer, Receptos, Sanofi-Aventis, Santhera, Siemens, Teva, UCB, and XenoPort; speaker fees from Bayer HealthCare, Biogen, Merck, Novartis, Sanofi-Aventis, and Teva; support of educational activities from Bayer HealthCare, Biogen, CSL Behring, Genzyme, Merck, Novartis, Sanofi-Aventis, and Teva; royalties from Neurostatus Systems GmbH; grants from Bayer HealthCare, Biogen, the European Union, Merck, Novartis, Roche, Roche Research Foundations, the Swiss Multiple Sclerosis Society, and the Swiss National Research Foundation.

¹³Mvelo Therapeutics GmbH, Berlin, Germany ¹⁴Former employee of Bayer HealthCare Pharmaceuticals, Whippany, New Jersey, United States

¹⁵Bayer Pharma AG, Berlin, Germany ¹⁶Neurology, Departments of Medicine, Clinical Research, Biomedicine and Biomedical Engineering, University Hospital Basel, Basel, Switzerland