# Efficacy and Safety of Ocrelizumab in Relapsing Multiple Sclerosis: **Results of the Phase III, Interferon β-1a–controlled OPERA I and OPERA II Studies**

## F Lublin,<sup>1</sup> DL Arnold,<sup>2,3</sup> A Bar-Or,<sup>2</sup> G Comi,<sup>4</sup> SL Hauser,<sup>5</sup> K Selmaj,<sup>6</sup> A Traboulsee,<sup>7</sup> P Chin,<sup>8</sup> P Fontoura,<sup>9</sup> H Garren,<sup>9</sup> G Klingelschmitt,<sup>9</sup> D Masterman,<sup>8</sup> L Kappos,<sup>10</sup> HP Hartung<sup>11</sup> on behalf of the OPERA I and OPERA II investigators

<sup>1</sup>Icahn School of Medicine at Mount Sinai, New York, NY, USA; <sup>2</sup>McGill University of California, San Francisco, CA, USA; <sup>6</sup>Medical University of Lodz, Lodz, Poland; <sup>3</sup>NeuroRx Research, Montreal, QC, Canada; <sup>4</sup>University of Lodz, Poland; <sup>4</sup>University of California, San Francisco, CA, USA; <sup>6</sup>Medical University of Lodz, Lodz, Poland; <sup>4</sup>University of California, San Francisco, CA, USA; <sup>6</sup>Medical University of Lodz, Lodz, Poland; <sup>4</sup>University of California, San Francisco, CA, USA; <sup>6</sup>Medical University of Lodz, Lodz, Poland; <sup>4</sup>University of California, San Francisco, CA, USA; <sup>6</sup>Medical University of Lodz, Lodz, Poland; <sup>4</sup>University of California, San Francisco, CA, USA; <sup>6</sup>Medical University of Lodz, Lodz, Poland; <sup>4</sup>University of California, San Francisco, CA, USA; <sup>6</sup>Medical University of Lodz, Poland; <sup>4</sup>University of California, San Francisco, CA, USA; <sup>6</sup>Medical University of Lodz, Poland; <sup>4</sup>University of California, San Francisco, CA, USA; <sup>6</sup>Medical University of Lodz, Poland; <sup>4</sup>University of California, San Francisco, CA, USA; <sup>6</sup>Medical University of Lodz, Poland; <sup>4</sup>University of California, San Francisco, CA, USA; <sup>6</sup>Medical University of California, San Francisco, CA, USA; <sup>6</sup>Medical University, S <sup>7</sup>University of British Columbia, Vancouver, BC, Canada; <sup>8</sup>Genentech, Inc., South San Francisco, CA, USA; <sup>9</sup>F. Hoffmann-La Roche Ltd, Basel, Switzerland; <sup>11</sup>Heinrich-Heine University Düsseldorf, Düsseldorf, Germany

## BACKGROUND

- ailability of disease-modifying treatments for relapsing multiple sclerosis (RMS), patients often continue to experience disease activity and accrue neurologic disability<sup>1-</sup>
- Furthermore. the safety profile and monitoring requirements of available higher-efficacy treatments has generally limited their use to later stages of disease<sup>1,4,5</sup>
- Ocrelizumab (OCR) is a humanized monoclonal antibody that selectively depletes CD20<sup>+</sup> B cells, while preserving the capacity for B-cell reconstitution and preexisting humoral immunity
- OPERA I and OPERA II were two identical Phase III randomized, double-blind, double-dummy trials to evaluate the efficacy and safety of OCR vs interferon (IFN) β-1a in patients with RMS

## **METHODS**

#### Study Design

- Patients were randomized (1:1) to receive OCR 600 mg via intravenous infusion every 24 weeks or subcutaneous IFN  $\beta$ -1a 44  $\mu$ g three times weekly through a 96-week treatment period (**Figure 1**)
- Patients in both groups received matching subcutaneous or intravenous placebo treatments
- All patients received intravenous methylprednisolone 100 mg (and optional analgesics/antipyretics and antihistamines) prior to infusion
- Eligible patients were stratified by region (USA vs rest of world) and baseline Expanded Disability Status Scale (EDSS) score (<4.0 vs ≥4.0)

#### Figure 1. OPERA I and OPERA II study design



\*Continued monitoring occurs if B cells are not repleted. EDSS, Expanded Disability Status Scale; IFN, interferon; IV, intravenous; OLE, open-label extension; RMS, relapsing multiple sclerosis; SC, subcutaneous.

## **Study Endpoints**

- Primary endpoint
- Protocol-defined annualized relapse rate (ARR) by 96 weeks during the double-blind, double-dummy treatment period Key secondary endpoints
- Time to onset of 12-week confirmed disability progression (CDP) through Week 96
- Total number of T1 gadolinium-enhancing lesions over 96 weeks
- Total number of new or enlarging T2 hyperintense lesions over 96 weeks
- Time to onset of 24-week CDP through Week 96
- Percentage change in brain volume as detected by brain MRI from Week 24 to Week 96; analysis from baseline to Week 96 was an exploratory endpoint
- Proportion of patients with an EDSS score  $\geq$  2.0 who have no evidence of disease activity (NEDA) by Week 96; NEDA analysis in all patients was an exploratory endpoint
- Safety
- Safety and tolerability of OCR 600 mg intravenously every 24 weeks in patients with RMS

#### Statistical Analysis

- All efficacy analyses were performed on the intent-to-treat (ITT) population
- Annualized relapse rate (ARR) was analyzed using a negative binomial model testing for treatment differences between OCR and IFN  $\beta$ -1a, adjusted by region and baseline EDSS score as covariates
- A significant result at a two-sided alpha < 0.05 would demonstrate a superior effect of OCR in reducing ARR compared with IFN β-1a
- CDP was prespecified as pooled analyses from the integrated OPERA I and OPERA II trial datasets

## **DISCLOSURES**

] Exe bige in the end of or speaking activities from Novartis, Teva, E Hoffmann-La Roche Ltd, Merck, Synthon, Receptos; SL Hauser serves on the scientific advisory boards from Biogen, Bayer, Excemed, the Serono Symposia International Foundation, Almirall, Chugai, and Receptos; SL Hauser serves on the scientific advisory boards from Biogen, Novartis, Teva, F Hoffmann-La Roche Ltd, Merck, Synthon, Receptos; SL Hauser serves on the scientific advisory boards from Biogen, Novartis, Teva, Sentitic advisory boards for Annexon, Symbiotix, and Bionure; he has also received travel reimbursement and writing assistance from F. Hoffmann-La Roche Ltd for CD20-related meetings and presentations; K Selmaj has received honoraria for advisory boards from Biogen, Novartis, Teva, Sentitic advisory boards for Annexon, Symbiotix, and Bionure; he has also received travel reimbursement and writing assistance from F. Hoffmann-La Roche Ltd, Merck, Synthon, Receptos; SL Hauser serves on the scientific advisory boards for Annexon, Symbiotix, and Bionure; he has also received travel reimbursement and writing assistance from F. Hoffmann-La Roche Ltd, Merck, Synthon, Receptos; SL Hauser serves on the scientific advisory boards for Annexon, Symbiotix, and Bionure; he has also received travel reimbursement and writing assistance from F. Hoffmann-La Roche Ltd; D Masternan is an employee and shareholder of F. Hoffmann-La Roche Ltd; D Masterman is an employee and shareholder of F. Hoffmann-La Roche Ltd; D Masterman is an employee and shareholder of F. Hoffmann-La Roche Ltd; D Masterman is an employee and shareholder of F. Hoffmann-La Roche Ltd; D Masterman is an employee and shareholder of Roche Ltd; D Masterman is an employee and shareholder of F. Hoffmann-La Roche Ltd; D Masterman is an employee and shareholder of F. Hoffmann-La Roche Ltd; D Masterman is an employee and shareholder of F. Hoffmann-La Roche Ltd; D Masterman is an employee and shareholder of F. Hoffmann-La Roche Ltd; D Masterman is an employee and shareholder of Roche Ltd; D Masterman is an employee and from Baver, Biogen, GeNeuro, Genzyme, Merck Serono, MedImmune, Novartis, Octapharma, Opexa, F. Hoffmann-La Roche Ltd, Teva, and Sanofi.

## RESULTS

## **Baseline Demographics and Disease Characteristics**

Baseline char (Table 1)

#### Table 1. Baseline demographics and disease characteristics

|                                                 | OPERA I                    |                                | OPERA II                   |                                |
|-------------------------------------------------|----------------------------|--------------------------------|----------------------------|--------------------------------|
|                                                 | IFN β-1a<br>44 μg<br>n=411 | Ocrelizumab<br>600 mg<br>n=410 | IFN β-1a<br>44 μg<br>n=418 | Ocrelizumab<br>600 mg<br>n=417 |
| Age, yrs, mean (SD)                             | 36.9 (9.3)                 | 37.1 (9.3)                     | 37.4 (9.0)                 | 37.2 (9.1)                     |
| Female, n (%)                                   | 272 (66.2)                 | 270 (65.9)                     | 280 (67.0)                 | 271 (65.0)                     |
| Time since MS onset, yrs, mean (SD)             | 6.3 (6.0)                  | 6.7 (6.4)                      | 6.7 (6.1)                  | 6.7 (6.1)                      |
| Time since MS diagnosis, yrs, mean (SD)         | 3.7 (4.6)                  | 3.8 (4.8)                      | 4.1 (5.1)                  | 4.2 (5.0)                      |
| Relapses in previous 12 months, mean (SD)       | 1.3 (0.6)                  | 1.3 (0.7)                      | 1.3 (0.7)                  | 1.3 (0.7)                      |
| Previously untreated,* n (%)                    | 292 (71.4)                 | 301 (73.8)                     | 314 (75.3)                 | 304 (72.9)                     |
| EDSS, mean (SD)                                 | 2.8 (1.3)                  | 2.9 (1.2)                      | 2.8 (1.4)                  | 2.8 (1.3)                      |
| Patients with Gd <sup>+</sup> lesions, n (%)    | 155 (38.1)                 | 172 (42.5)                     | 172 (41.4)                 | 161 (39.0)                     |
| Number of Gd <sup>+</sup> T1 lesions, mean (SD) | 1.9 (5.2)                  | 1.7 (4.2)                      | 2.0 (4.9)                  | 1.8 (5.0)                      |
| Number of T2 lesions, mean (SD)                 | 51.1 (39.9)                | 51.0 (39.0)                    | 51.0 (35.7)                | 49.3 (38.6)                    |

#### Relapse

IFN β-1a (p<0.0001 for both; **Figure 2**)

#### Figure 2. Protocol-defined ARR by 96 weeks





• OCR significantly reduced protocol-defined ARR by 46% in OPERA I and by 47% in OPERA II, compared with

\*Adjusted ARR calculated by negative binomial regression adjusted for baseline EDSS score (<4.0 vs  $\geq$ 4.0), and geographic region (USA vs ROW). ARR, annualized relapse rate; EDSS, Expanded Disability Status Scale; IFN, interferon; ITT, intent-to-treat; ROW, rest of world.

### **Disability Progression**

 In prespecified pooled analyses of OPERA I and OPERA II, compared with IFN β-1a, OCR reduced the risk of 12-week CDP by 40% (p<0.001) and 24-week CDP by 40% (p<0.01; **Figure 3**)

#### **Figure 3. Pooled analyses of time to onset of disability progression confirmed** after ≥12 weeks and ≥24 weeks



baseline score was  $\leq 5.5$ , and  $\geq 0.5$  point and when the baseline score was > 5.5. <sup>†</sup>Proportion of patients having CDP through Week 96.

CDP, confirmed disability progression; CI, confidence interval; HR, hazard ratio; IFN, interferon; ITT, intent-to-treat; OCR, ocrelizumab.

#### **Brain MRI Endpoints**

- Compared with IFN β-1a, OCR significantly reduced the mean number of T1 gadolinium-enhancing lesions and the mean number of new or enlarging T2 hyperintense lesions by Week 24; significant reductions continued through the 96-week treatment period (**Figure 4**)
- In addition. OCR reduced the rate of whole brain volume loss from baseline to Week 96. compared with IFNB-1a. by 23.5% in OPERA I (p<0.0001) and 23.8% in OPERA II (p=0.0001; Figure 5)



#### **Figure 4. Relative reduction in the mean number of T1 Gd<sup>+</sup> lesions across timepoints** (A) and mean number of new or enlarging T2 hyperintense lesions across timepoints (B) per MRI scan in the OCR vs IFN β-1a-treated groups (exploratory endpoints)

\*Adjusted by means calculated by negative binomial regression and adjusted for baseline T1 Gd lesion (present or not), baseline EDSS (<4.0 vs ≥4.0), and geographical region (USA vs ROW). <sup>†</sup>Adjusted by means calculated by negative binomial regression and adjusted for baseline T2 lesion count, baseline EDSS (<4.0 vs  $\geq$ 4.0), and geographical region (USA vs ROW). EDSS, Expanded Disability Status Scale; Gd<sup>+</sup>, gadolinium–enhancing; IFN, interferon; ITT, intent-to-treat; MRI, magnetic resonance imaging; ROW, rest of world.

## Presented at the 2016 Annual Meeting of the Consortium of Multiple Sclerosis Centers (CMSC); National Harbor, MD, USA; June 1–4, 2016

#### Figure 5. Percent change in whole brain volume from baseline to Week 96 (exploratory endpoint)



CI, confidence interval; IFN, interferon

#### No Evidence of Disease Activity (NEDA)

In an analysis of all patients in the ITT population, OCR increased the proportion of patients that achieved NEDA vs IFN  $\beta$ -1a in OPERA I and OPERA II by 64% and 89%, respectively, through Week 96 (p<0.0001 for both; **Figure 6**).

#### Figure 6. NEDA at Week 96 (exploratory endpoint)



\*Compared using the Cochran–Mantel–Haenszel test stratified by geographic region (USA vs ROW) and baseline EDSS score (<4.0 vs  $\geq$ 4.0). MRI scans from weeks 24, 48 and 96 were taken into consideration for the MRI criteria of the NEDA endpoint. CDP, confirmed disability progression; EDSS, Expanded Disability Status Scale; Gd<sup>+</sup> gadolinium–enhancing; IFN, interferon; ITT, intent-to-treat; NEDA, no evidence of disease activity; MRI, magnetic resonance imaging; ROW, rest of world.

#### Safety

- The proportion of patients reporting adverse events (AEs) was 83.3% for both the OCR and IFN β-1a groups across OPERA I and OPERA II studies (Table 2)
- The most commonly reported AEs were infusion-related reactions (IRRs) and infections in the OCR group, and influenzalike illness and local cutaneous reactions in the IFN  $\beta$ -1a group
- More OCR-treated patients experienced at least one IRR vs those in the IFNβ-1a group who received placebo infusions (30.9% for OCR and 7.3% for IFN β-1a in OPERA I; 37.6% for OCR and 12.0% for IFN β-1a in OPERA II). Most were mild to moderate and reported at the first infusion (27.5% for OCR compared with 6.5% for IFN β-1a in a pooled analysis of OPERA I and OPERA II); IRRs decreased in frequency and severity with subsequent dosing (Figure 7), and were manageable with premedication, infusion adjustments and symptomatic treatment
- A higher proportion of patients treated with OCR reported respiratory tract infections compared with IFN β-1a
- The proportion of patients reporting a herpes virus-associated infection was 5.9% with OCR and 3.4% with IFN  $\beta$ -1a; most were mild to moderate
- Serious AEs were reported in 6.9% of OCR-treated patients and 8.7% of IFN β-1a-treated patients across OPERA I and **OPERA II** studies
- In the OCR arm: 1.3%, infections and infestations; 1.0%, nervous system disorders; 0.7%, injury, poisoning, and procedural complications
- In the IFN  $\beta$ -1a arm: 2.9%, infections and infestations; 1.3%, nervous system disorders; 1.2%, injury, poisoning, and procedural complications
- Six malignancies were reported across OPERA I and OPERA I
- 4 in the OCR arm: two invasive ductal breast carcinomas, one renal cell carcinoma and one malignant melanoma -2 in the IFN  $\beta$ -1a arm: one mantle cell lymphoma and one squamous cell carcinoma in the chest • Three deaths were reported; none were considered related to study treatment
- 1 (<1%) in the OCR arm (suicide, OPERA II)</li>
- -2 (<1%) in the IFN  $\beta$ -1a arm (suicide, OPERA I; mechanical ileus, OPERA II)



#### Table 2. AEs over the 96-week treatment period

| n (%)                                                                          | IFN β-1a<br>44 μg<br>(n=826) | Ocrelizumab<br>600 mg<br>(n=825) |  |
|--------------------------------------------------------------------------------|------------------------------|----------------------------------|--|
| Total number of patients with ≥1 AE                                            | 688 (83.3)                   | 687 (83.3)                       |  |
| Total number of patients with ≥1 AE occurring at a frequency ≥5% in either arm | 539 (65.3)                   | 544 (65.9)                       |  |
| Injury, poisoning and procedural complications                                 | 155 (18.8)                   | 333 (40.4)                       |  |
| Infusion-related reaction                                                      | 80 (9.7)                     | 283 (34.3)                       |  |
| General disorders and administration-site conditions                           | 396 (47.9)                   | 173 (21.0)                       |  |
| Influenza-like illness                                                         | 177 (21.4)                   | 38 (4.6)                         |  |
| Injection-site erythema                                                        | 127 (15.4)                   | 1 (0.1)                          |  |
| Fatigue                                                                        | 64 (7.7)                     | 64 (7.8)                         |  |
| Injection-site reaction                                                        | 45 (5.4)                     | 2 (0.2)                          |  |
| Infections and infestations                                                    | 433 (52.4)                   | 482 (58.4)                       |  |
| Upper respiratory tract infection                                              | 87 (10.5)                    | 125 (15.2)                       |  |
| Nasopharyngitis                                                                | 84 (10.2)                    | 122 (14.8)                       |  |
| Urinary tract infection                                                        | 100 (12.1)                   | 96 (11.6)                        |  |
| Sinusitis                                                                      | 45 (5.4)                     | 46 (5.6)                         |  |
| Bronchitis                                                                     | 29 (3.5)                     | 42 (5.1)                         |  |
| Nervous system disorders                                                       | 252 (30.5)                   | 224 (27.2)                       |  |
| Headache                                                                       | 124 (15.0)                   | 93 (11.3)                        |  |
| Psychiatric disorders                                                          | 144 (17.4)                   | 149 (18.1)                       |  |
| Depression                                                                     | 54 (6.5)                     | 64 (7.8)                         |  |
| Insomnia                                                                       | 38 (4.6)                     | 46 (5.6)                         |  |
| Musculoskeletal and connective tissue disorders                                | 207 (25.1)                   | 204 (24.7)                       |  |
| Back pain                                                                      | 37 (4.5)                     | 53 (6.4)                         |  |
| Arthralgia                                                                     | 51 (6.2)                     | 46 (5.6)                         |  |

Table includes only pooled AEs occurring in ≥5% of patients in at least one treatment group and the corresponding system organ classes

AE, adverse event; IFN, interferon

#### **Figure 7. Infusion-related reactions over time**<sup>\*†</sup>



\*Numbers in columns represent the proportion of patients experiencing a grade of IRR; <sup>+</sup>Grading per Common Terminology Criteria. Note: All received 100 mg IV AE. adverse event: IFN. interferon: IRR. infusion-related reaction.

#### CONCLUSIONS

- Compared with IFN β-1a, ocrelizumab significantly reduced disease activity on clinical and brain MRI endpoints in both OPERA I and OPERA I
- Overall, in OPERA I and OPERA II, ocrelizumab had a favorable safety profile over the 96-week study period Results of OPERA I and OPERA II showed that targeting CD20<sup>+</sup> B cells with ocrelizumab is a potential therapeutic approach in relapsing MS

#### ACKNOWLEDGMENTS

We would like to thank all patients, their families, and the investigators who participated in this trial. This research was funded by F. Hoffmann-La Roche Ltd, Basel, Switzerland. Support for third-party writing assistance for this presentation was provided by F. Hoffmann-La Roche Ltd, Basel, Switzerland.

#### REFERENCES

- 1. Markowitz CE, et al. Am J Manag Care 2010;16:S211-8
- 2. Sorensen PS, et al. J Neurol Sci 2007;259:128-32. 3. Shirani A, *et al. JAMA* 2012;308:247-56.
- 4. Hartung HP, et al. Expert Rev Neurother 2011;11:351-62.
- 5. Kappos L, *et al. Lancet Neurol* 2011;10:745-58.
- 6. Polman C, et al. Ann Neurol 2011;69:292-302.

