

Objectives

- Integrate rehabilitative strategies into the multidisciplinary management of the sequelae of MS which promote improvements and optimize function and quality of life
- Identify MS-specific screening techniques that facilitate individualized and targeted rehabilitation services
- Discuss outcome measures for determination of balance and strength deficits, and balance confidence
- Discuss the use of Tai Chi for improvement in balance deficits in people with MS
- No disclosures

Introduction

- Balance deficits identified in people with mild MS (Denommé 2014, Gunn 2013)
 - Risk for fall
 - Loss of confidence
 - Impairments associated with increased fall risk
 - Weakness
 - Impaired sensation
 - Fatigue
 - Visual deficits

Core beliefs related to exercise

- Cycle of activity/inactivity
 - Emotional responses associate with past experience with exercise
 - Fatigue
 - Perceived cost of exercise
- Line of benefit and harm
 - Physical activity makes MS worse
 - Physical activity waste of time
 - State of disease versus wellness
 - Knowledge of trained personnel
- Participation in exercise remains low

Purpose

- The use of community based Tai Chi program to improve
 - Balance
 - Gait
 - Reduce fall risk
 - Community setting chosen for ease of continuation of the program
 - Setting Mind Set Assisted Physical Training
 - Personal training program for people with MS
 - No cost /supported by NMSS

Methods

- 25 people recruited from support groups, neurologists, Mind Set Assisted Physical Training gym
- 15 people returned for post-testing
- Inclusion criteria
 - Definite diagnosis of MS
 - Ages 18-75
 - Able to read and sign consent to participate form
 - Attend pre and post-testing
 - Complete 2 x per week x 6 week Tai Chi

Pre/Post-Testing

- Berg Balance Scale (BBS) static balance
- Fatigue Severity Scale (FSS) self report measure of fatigue
- Timed Up and Go (TUG) dynamic timed balance
- Dynamic Gait Index (DGI) dynamic balance measure during gait
- Activities Specific Balance Scale (ABC) self report balance confidence
- Two Minute Walk Test (2MWT) endurance gait measure
- Five Times Sit to Stand (5TSTS) LE strength

Results

Table 3: Test Statistics^a

	Z	Asymp. Sig. (2- tailed)
BBS post - BBS pre	-2.940b	.003
FSS post - FSS pre	-2.279°	.023
TUG post - TUG pre	-2.375°	.018
DGI post - DGI pre	943 ^b	.345
ABC post - ABC pre	422b	.673
2 min walk post - 2 min walk pre	-2.366b	.018
5TST post - 5TST pre	-2.950°	.003

- a. Wilcoxon Signed Ranks Test
- b. Based on negative ranks.
- c. Based on positive ranks.

Discussion

- Demographics
 - Mean age 59.3
 - 73% woman
 - 66% used assisted device
 - 3 people had progressive forms of MS
 - Average length of MS 21 years

Benefit of Tai Chi

Improvements

- BBS: p=0.003
- FSS: p=0.023
 - Mean:43.7 pre and 35.8 post
 - > 36 indicates severe
- TUG: p=0.018
- 5TSTS: p=0.003
 - Strength LE
- 2 MWT:p=0.018
 - Endurance gait

No Change

- DGI: p=0.345
 - Dynamic balance during gait
 - Variety of tasks
 - No walking in Tai Chi
- ABC: p=0.673
 - · Confidence in balance

Fall Risk

Pre-test

- BBS: 37.00 Risk for falls
 - MCD=6 (Godi, 2012)
- TUG: 13.5 Risk for falls
 - 48.51
 - MCD=24%
- 5TSTS: 32.93 secs Risk for falls
 - Cut off > 16 secs risk for falls
- 2MWT: 212.60 ft
 - MDC=63.02 feet

Post-test

- BBS: 40.73
 - 3.73 change
- TUG
 - 46.24
 - 4.8% change
- 5TSTS: 24.40 (8.53 secs)
 - · Risk for falls
- 2MWT: 238.13
 - 25.53 feet

Identified benefit

- All levels of MS allowed in study
- Began in a chair, end of 6 weeks, all were standing during Tai
 Chi class
- 5TSTS improved which probably led to improvement in TUG
 - Both have sit to stand
 - LE strength improved
- BBS improved, improvement in static balance but not in dynamic balance (DGI)
 - Tai Chi is balance in standing and weight shifting

Identified benefit

- FSS improved and mean post-testing was 35.8
 - Just barely below severe ranking
 - Fatigue continues to be challenge
- 2MWT
 - Did not meet 63 feet MDC
 - Balance confidence didn't improve
 - Tai Chi does not have a gait component
 - Training is task specific (Nadeau, 2013)

Suggestions/Limitations

- Limitations
 - Small cohort
 - Short time frame (6 weeks)
 - No control group
 - No long term follow up
- Suggestions
 - Longer length of intervention: 12 weeks
 - Control group
 - Long term follow up

Thanks to

- Space, Support, Encouragement
- National Multiple Sclerosis Society
 - Assistance with recruiting
- All of the people with MS who are willing to try new activities

- 1. Rosenblat A. Who gets MS? http://www.nationalmssociety.org/What-is-MS/Who-Gets-MS. Updated 2016. Accessed January 18, 2016.
- 2. National Multiple Sclerosis Society. What is MS? definition of MS. <u>www.nataionalmssociety.org</u>. Updated 2015. Accessed 06/29/2015, 2015.
- 3. Cameron MH, Horak FB, Herndon RR, Bourdette D. Imbalance in multiple sclerosis: A result of slowed spinal somatosensory conduction. *Somatosens Mot Res.* 2008;25(2):113-122. 10.1080/08990220802131127.
- 4. Wang, Chenchen,MD, MPH, Schmid CH, PhD, Rones R, BS, et al. A randomized trial of tai chi for fibromyalgia. *N Engl J Med*. 2010;363(8):743-54. http://ezproxy.twu.edu:2079/10.1056/NEJMoa0912611.
- 5. Wayne PM, Kiel DP, Krebs DE, et al. The effects of tai chi on bone mineral density in postmenopausal women: A systematic review. *Arch Phys Med Rehabil*. 2007;88(5):673-680. doi: http://ezproxy.twu.edu:2079/10.1016/j.apmr.2007.02.012.
- 6. Mills N, Allen J, Carey-Morgan S. Does tai chi/qi gong help patients with multiple sclerosis? *J Bodywork Movement Ther*. 2000;4(1):39-48. doi: http://ezproxy.twu.edu:2079/10.1054/jbmt.1999.0139.
- 7. Azimzadeh E, Hosseini MA, Nourozi K, Davidson PM. Effect of tai chi chuan on balance in women with multiple sclerosis. *Complementary Therapies in Clinical Practice*. 2015;21(1):57-60. doi: https://ezproxy.twu.edu:2079/10.1016/j.ctcp.2014.09.002.
- 8. Mills N, Allen J, Carey-Morgan S. Does tai chi/qi gong help patients with multiple sclerosis? *J Bodywork Movement Ther*. 2000;4(1):39-48. doi: http://ezproxy.twu.edu:2079/10.1054/jbmt.1999.0139.
- 9. Nilsagård Y,E., Forsberg AS, von Koch L. Balance exercise for persons with multiple sclerosis using wii games: A randomised, controlled multi-centre study. *Mult Scler*. 2013;19(2):209-216. http://ezproxy.twu.edu:2048/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=mnh&AN=22674972&site=ehost-live&scope=site. doi: 10.1177/1352458512450088.

10. Gunn HJ, Newell P, Haas B, Marsden JF, Freeman JA. Identification of risk factors for falls in multiple sclerosis: A systematic review and meta-analysis. *Phys Ther.* 2013;93(4):504-513.

 $\frac{\text{http://ezproxy.twu.edu:}2048/login?url=http://search.ebscohost.com/login.aspx?direct=true\&db=mnh\&AN=23237970\&site=ehost-live\&scope=site.}{\text{doi: }10.2522/ptj.20120231.}$

- 11. Nadeau S, Wu S, Dobkin B, et al. Effects of task-specific and impairment-based training compared with ususal care on functional walking ability after inpatient stroke rehabilitation: LEAPS trial. *Neurorehabilitation and Neural Repair*. 2013;27(4):370-380.
- 12. Duncan RP, Leddy AL, Earhart GM. Five times sit-to-stand test performance in parkinson's disease. *Arch Phys Med Rehabil*. 2011;92(9):1431-1436. doi: http://dx.doi.org/10.1016/j.apmr.2011.04.008.
- 13. Cattaneo D, Regola A, Meotti M. Validity of six balance disorders scales in persons with multiple sclerosis. *Disabil Rehabil*. 2006;28(12):789-795.

 $\frac{\text{http://ezproxy.twu.edu:}2048/login?url=http://search.ebscohost.com/login.aspx?direct=true\&db=mnh\&AN=16754576\&site=ehost-live\&scope=site.}$

14. Nilsagård Y, Lundholm C, Denison E, Gunnarsson LG. Predicting accidental falls in people with multiple sclerosis -- a longitudinal study. *Clin Rehabil*. 2009;23(3):259-269.

 $\underline{\text{http://ezproxy.twu.edu:}2048/login?url=http://search.ebscohost.com/login.aspx?direct=true\&db=ccm\&AN=2010200269\&site=ehost-live\&scope=site.\ doi: 10.1177/0269215508095087.$

15. Nilsagård Y, Carling A, Forsberg A. Activities-specific balance confidence in people with multiple sclerosis. *Mult Scler Int*. 2012;2012:613925-613925.

 $\frac{\text{http://ezproxy.twu.edu:}2048/login?url=http://search.ebscohost.com/login.aspx?direct=true\&db=mnh\&AN=22919491\&site=ehost-live\&scope=site.doi: 10.1155/2012/613925.$