

# A Soft, Flexible Skin-Mounted Sensor for Monitoring Balance **Deficits in People with Multiple Sclerosis**

## Ruopeng Sun<sup>1</sup>, Yaejin Moon<sup>1</sup>, Ryan S. McGinnis<sup>2</sup>, Kirsten Seagers<sup>3</sup>, Robert W. Motl<sup>4</sup>, Nirav Sheth<sup>3</sup>, John A. Wright<sup>3</sup>, Roozbeh Ghaffari<sup>3</sup>, Jacob J.Sosnoff<sup>1</sup>

1. Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign; 2. Department of Physical Therapy, University of Alabama at Birmingham

### BACKGROUND

- Impaired balance affects 75% of MS patients during the progression of the disease[1].
- Degradation in balance increases the risk of falls[2].
- Clinical balance rating scales (i.e. Berg Balance Test) often lack precision and depend on clinician's expertise.
- Force platform-based balance assessment is immobile and expensive.
- The BioStampRC<sup>®</sup> sensor is a soft, flexible wireless inertial sensor that can be attached to skin with minimal preparation.







Posterior View

**Objective:** Investigate the validity of BioStampRC<sup>®</sup> sensor to assess the balance performance of individuals with MS (with and without a history of falling) and healthy control subjects.

#### METHODS

#### Participants: 40 MS participants + 12 Healthy Controls

|                       | Healthy Control  | MS Non-Faller           | MS F |
|-----------------------|------------------|-------------------------|------|
|                       |                  | (no falls in the past 6 | (>=2 |
|                       |                  | `month)                 |      |
| N (Male/Female)       | 12 (5/7)         | 23 (4/19)               |      |
|                       |                  |                         |      |
| Age                   | 58.1 (36-73)     | 56.3 (29 - 68)          | 5    |
|                       |                  |                         |      |
| Years since diagnosis | NA               | 16.4 (1-37)             | 0    |
|                       |                  |                         |      |
| EDSS median (range)   | NA               | 3.5 (0-6.5)             |      |
|                       |                  |                         |      |
| ABC                   | 95.4 (92.5 -100) | 74.1(8.8 - 100)         | 59.  |
|                       | , , ,            |                         |      |

**Recurrent Faller** falls in the past 6 month) 17 (8/9) 59.1 (48 - 79) 19.1 (5-35) 6 (3.5-7) .9 (26.6 - 88.1)

- The balance assessment consisted of two 30-second standing trials in three conditions:
  - Eyes Open/Firm Surface (EO)
  - Eyes Closed/Firm Surface (EC)
  - Eyes Open/Foam Surface (FEO)
- Postural sway was measured with a BioStampRC<sup>®</sup> sensor placed on the lower back (L5), as well as by a force plate placed under the feet.



| Measure abbreviation | Description                                     | Characterization |  |
|----------------------|-------------------------------------------------|------------------|--|
| JERK                 | Sway jerkiness, time derivative of acceleration | Sway smoothness  |  |
| CEA                  | 95% confidence sway ellipse area                | Sway amplitude   |  |
| SP                   | Total length of sway trajectory                 | Sway amplitude   |  |
| MV                   | Mean sway velocity                              | Sway velocity    |  |
| TP                   | Total power of sway                             | Sway power       |  |

#### RESULTS

|     |                                                         | Force Plate |           |               |          |                     | BioStampRC® |      |        |        |               |        |                     |         |    |
|-----|---------------------------------------------------------|-------------|-----------|---------------|----------|---------------------|-------------|------|--------|--------|---------------|--------|---------------------|---------|----|
|     |                                                         | F           | łC        | MS Non-Faller |          | MS Recurrent Faller |             |      | HC     |        | MS Non-Faller |        | MS Recurrent Faller |         |    |
|     | JERK (m²/s⁵)                                            | Ν           | IA        | Ν             | IA       | Ν                   | IA          |      | 1.19   | (0.10) | 2.82          | (0.49) | 3.73                | (0.65)  |    |
|     | CEA (mm², m²/s⁴)                                        | 107.84      | (11.98)   | 349.71        | (74.87)  | 589.80              | (129.27)    | *    | 0.02   | (0.00) | 0.04          | (0.01) | 0.06                | (0.01)  | *  |
| EO  | SP(mm, m/s²)                                            | 261.04      | (11.41)   | 449.30        | (42.11)  | 533.26              | (44.35)     | *    | 7.06   | (0.26) | 9.60          | (0.66) | 11.17               | (0.87)  |    |
|     | MV(mm/s, mm/s)                                          | 8.67        | (0.39)    | 14.95         | (1.40)   | 17.78               | (1.48)      | *    | 20.65  | (1.75) | 33.78         | (3.53) | 38.92               | (4.56)  |    |
|     | TP(m <sup>2</sup> , m2/s <sup>4</sup> )                 | 8.48        | (0.28)    | 13.58         | (1.19)   | 16.43               | (1.38)      | *    | 6.24   | (0.39) | 9.48          | (0.84) | 11.71               | (1.22)  | *  |
|     | JERK (m²/s⁵)                                            | Ν           | IA        | NA            |          | NA                  |             | 1.80 | (0.17) | 10.25  | (2.61)        | 9.78   | (2.75)              | *       |    |
|     | CEA (mm <sup>2</sup> , m <sup>2</sup> /s <sup>4</sup> ) | 130.02      | (12.79)   | 812.03        | (175.77) | 1182.31             | (291.26)    | *+   | 0.02   | (0.00) | 0.11          | (0.03) | 0.14                | (0.04)  | *  |
| EC  | SP(mm, m/s <sup>2</sup> )                               | 373.46      | (17.53)   | 816.82        | (87.81)  | 842.56              | (72.46)     | *+   | 8.46   | (0.38) | 15.80         | (1.87) | 16.66               | (1.87)  | *+ |
|     | MV(mm/s, mm/s)                                          | 12.45       | (0.58)    | 27.23         | (2.93)   | 28.09               | (2.42)      | *+   | 26.43  | (1.90) | 46.58         | (5.07) | 56.39               | (8.40)  | *  |
|     | TP(m <sup>2</sup> , m2/s <sup>4</sup> )                 | 11.46       | (0.36)    | 21.46         | (2.16)   | 24.26               | (1.99)      | *+   | 8.41   | (0.44) | 14.88         | (1.66) | 17.61               | (2.46)  | *  |
|     | JERK (m²/s⁵)                                            | 1           | <b>IA</b> | N             | IA       | Ν                   | A           |      | 5.62   | (1.68) | 9.93          | (1.69) | 11.81               | (2.02)  | *  |
|     | CEA (mm <sup>2</sup> , m <sup>2</sup> /s <sup>4</sup> ) | 665.33      | (65.38)   | 1339.98       | (182.61) | 1886.68             | (399.34)    |      | 0.05   | (0.01) | 0.16          | (0.03) | 0.23                | (0.07)  | *  |
| FEO | SP(mm, m/s <sup>2</sup> )                               | 659.63      | (46.85)   | 893.58        | (58.70)  | 1040.84             | (75.51)     | *    | 13.80  | (1.58) | 17.59         | (1.33) | 19.73               | (1.26)  |    |
|     | MV(mm/s, mm/s)                                          | 21.99       | (1.56)    | 29.79         | (1.96)   | 34.69               | (2.52)      | *    | 36.50  | (2.87) | 60.77         | (6.26) | 76.55               | (13.27) | *  |
|     | TP(m <sup>2</sup> , m2/s <sup>4</sup> )                 | 19.46       | (1.26)    | 25.00         | (1.54)   | 30.40               | (3.37)      | *    | 11.27  | (0.95) | 16.28         | (1.41) | 18.70               | (1.73)  | *  |

Mean and SE of sway measurements by BioStampRC<sup>®</sup> and force plate. \* significant difference between HC and MS Recurrent Faller, + significant difference between HC and MS Non-Faller (p<0.017).

- CEA and TP sway metrics (derived from force plate and BioStampRC<sup>®</sup>) can differentiate MS Recurrent Faller from HC in all test conditions.
- Force plate based metrics (CEA,SP,MV, TP) and SP metric from BioStampRC<sup>®</sup> can additionally differentiate MS Non-Faller from HC in EC condition.
- Sway JERK, a unique metric for accelerometry measure, can differentiate MS Recurrent Faller from HC in EC/FEO conditions.

| Spearman Rho | EO   | EC   | FEO  |
|--------------|------|------|------|
| CEA          | 0.88 | 0.89 | 0.88 |
| SP           | 0.90 | 0.95 | 0.87 |
| MV           | 0.66 | 0.74 | 0.80 |
| TP           | 0.87 | 0.94 | 0.88 |

and force plate based sway metrics.

| AUC  | Force Plate | BioStampRC® |
|------|-------------|-------------|
| JERK | NA          | 0.648       |
| CEA  | 0.660       | 0.630       |
| SP   | 0.653       | 0.648       |
| MV   | 0.653       | 0.630       |
| TP   | 0.666       | 0.660       |

- metrics.
- for postural sway assessment.
- sensory conditions.
- individual's falls risk.

This research was supported by MC10, Inc., who had no influence on experimental design or manuscript preparation.

### References

[1] McAlpine D, Compston A. McAlpine's multiple sclerosis. Elsevier Health Sciences; 2005.

[2] Sosnoff JJ, Socie MJ, Boes MK, Sandroff BM, Pula JH, Suh Y et al. Mobility, balance and falls in persons with multiple sclerosis. PloS one 2011;6(11):e28021.



# MOTOR CONTROL RESEARCH LAB

Moderate to strong correlation (rho >0.66) between BioStampRC<sup>®</sup>

BioStampRC<sup>®</sup> based sway metrics were as effective for differentiating individuals with poor balance as the force plate sway

#### DISCUSSION

The BioStampRC<sup>®</sup> sensor is a valid and objective measurement tool

MS recurrent faller swayed more than healthy controls, and their postural sway increased more than those in controls with altered

This soft, flexible wireless inertial sensor offers a portable and easyto-administer balance assessment, and provide key information on

Future work is needed to examine whether body motion quantified by this skin-mounted inertial sensor are predictive of falls.

#### ACKNOWLEDGEMENT