

A Novel Electrophysiological Battery for the Assessment of Visual Dysfunction in Multiple Sclerosis

Roseann Archetti¹, Kasey Siegel¹, Frederick W. Foley^{1,2}, and Vance Zemon¹

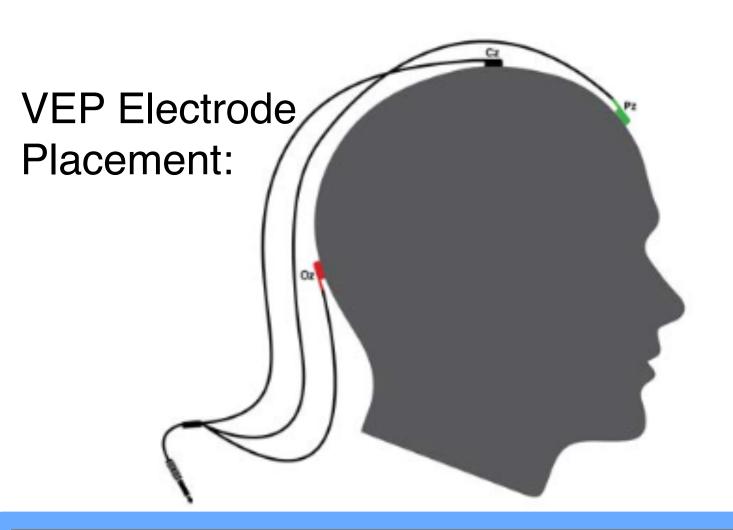
¹Ferkauf Graduate School of Psychology, Yeshiva University, Bronx, NY; ²Holy Name Medical Center, MS Center, Teaneck, NJ

Abstract

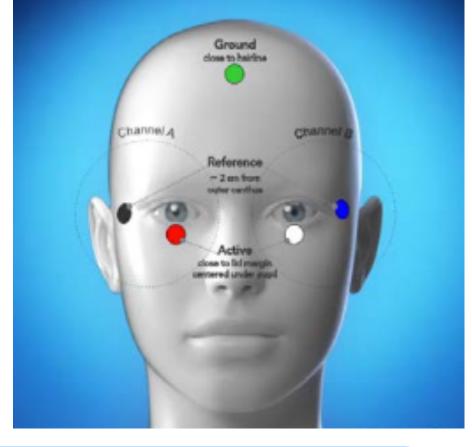
<u>Objectives:</u> The current work aims to establish a battery of electrophysiological techniques that rapidly and objectively assess function in select neural pathways and mechanisms in patients with MS at both retinal and cortical levels.

Methods: Patients with relapsing-remitting MS and age-matched controls were tested on an electrophysiological battery using EvokeDx device (Konan Medical USA), which presented visual stimuli on a calibrated organic LED display, recorded amplified electroencephalographic (EEG) and electroretinographic (ERG) signals, and applied multivariate statistical analyses on the data in the frequency domain following a discrete Fourier transform. Stimuli and analytic techniques were designed to tap select neural pathways and mechanisms (e.g., retinal ganglion cells, magnocellular ON and OFF pathways, lateral inhibitory processes).

<u>Results:</u> Preliminary findings indicate that frequency-domain techniques capture neural deficits in rigorous, quantitative measures that are sensitive to dysfunction in the visual pathways.


<u>Conclusions:</u> The objective, rapid electrophysiological tests included in this battery capture the effects of the disease process and may be of value in identifying early-stage cases ahead of conventional measures, and may be able to monitor the progression of the disease as well as evaluate the effects of various treatments.

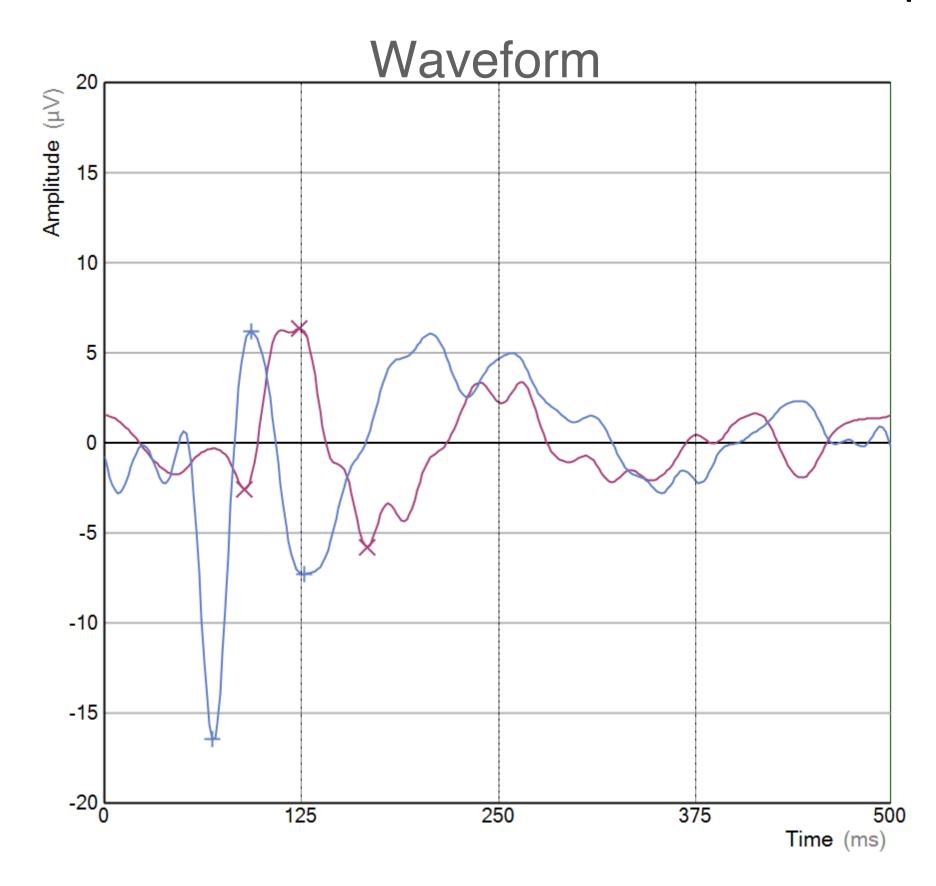
Background

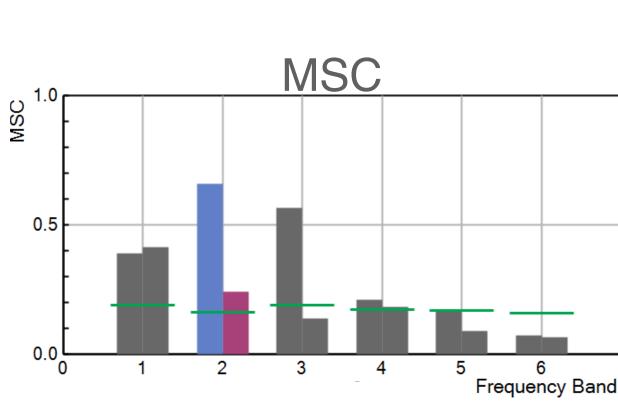

- Visual impairment is a key component of the MS disease process, with disturbances along the afferent visual pathway occurring in 80% or more of individuals with MS at some point during their disease course.¹
- MS lesions can affect any part of the neural networks involved in vision and, therefore, can often cause a variety of neuro-ophthalmic manifestations. ²
- While acute optic neuritis (AON) is often a primary manifestation, visual impairments characterized by structural, axonal and other neuronal loss do occur in patients without a history of ON. ³
- Compromised components of the visual system have been associated with worsening of the disease.
- The frequency with which the afferent visual pathway is involved in the disease process of MS makes it a useful model of the pathophysiological mechanisms involved.

Methods

- Stimulation, data collection & analysis performed using EvokeDx system
- Viewing: Monocular (VEP) and binocular (ERG) with viewing distance of 65 cm
- Visual acuity of 20/30 or better verified with Sloan ETDRS chart
- EvokeDx system automatically applies a technique known as a discrete Fourier transform to extract a set of frequency components from the VEP response. Each component is quantified in terms of sine and cosine coefficients, or in terms of computed amplitude and phase values.
- Magnitude-squared coherence (MSC) is a relative measure of signal strength computed for distinct frequency bands.
- Conventional measures, peak-to-trough N75-P100 amplitudes and latencies for the negative peak (N75) and positive peak (P100) will be also examined for the transient VEP.
- Ten individual responses were analyzed by calculating sine and cosine coefficients, and a mean amplitude and mean phase, for each individual frequency component. ^{4,5}

ERG Electrode Placement:




Conclusions & Implications

- This novel approach using a battery of short-duration VEPs is expected to yield sensitive and objective indices of neural pathway function in healthy controls and adults with MS and CIS.
- We expect to be able to identify relationships between functional neural mechanisms of vision and the MS disease process.

Preliminary Results

Transient VEP Response

Test A: Healthy Control
Participant
Test B: Multiple Sclerosis
Participant

			N75	Δ	P100	\triangle	N135
AMP (µV)	Test A (OD)	+	-16.43	22.61	6.18	13.46	-7.29
	Test B (OD)	×	-2.58	8.92	6.34	12.14	-5.80
		Δ		13.69		1.33	
Time (ms)	Test A (OD)	+	68		93		127
	Test B (OD)	X	88		123		167
		Δ	-20		-30		-40

References

- 1. Beh, S. C., Frohman, E. M., & Frohman, T. (2016). Neuro-ophthalmologic manifestations of multiple sclerosis. In B. S. Giesser (Ed.), *Primer on Multiple Sclerosis* (2nd ed., pp. 185-212). New York, NY: Oxford University Press.
- 2. Galetta, K. M., & Balcer, L. J. (2013). Measures of visual pathway structure and function in MS: Clinical usefulness and role for MS trials. Mult Scler Relat Disord, 2(3), 172-182. doi:10.1016/j.msard.2012.12.004
- 3. Chiappa, K. H. (1990). *Evoked Potentials in Clinical Medicine*. 2nd ed. New York: Raven Press.
- 4. Zemon, V., Eisner, W., Gordon, J., Grose-Fifer, J., Tenedios, F., & Shoup, H. (1995). Contrast-dependent responses in the human visual system: childhood through adulthood. *Int J Neurosci, 80*(1-4), 181-201.
- 5. Zemon, V. M., Weinger, P. M., Harewood, A., Nunez, V., Michel, J.-P., Azizgolshani, S., . . . Gordon, J. (2012). A Short-Duration Visual Evoked Potential (VEP) Test Protocol. *Investigative Ophthalmology & Visual Science*, *53*(14), 5719-5719.