

Heart Rate Response and Changes in Walking Velocity during the 12-Minute Walk Test in People with Multiple Sclerosis Cohen, E.T.,¹ Muth, S.,² Dekerlegand, R.L.,² Ferraro, R.¹, Meyer, L.¹, Chen, D.¹

¹ Rutgers, The State University of New Jersey, - School of Health Professions, New Jersey, USA; ² Thomas Jefferson University, Pennsylvania, USA

Background

- People with multiple sclerosis (MS) commonly experience a decline in walking performance evidenced by decreased walking velocity (WV) during the 6-minute walk test (6MWT).
- In addition, increases in heart rate (HR) and the rate of oxygen consumption (VO₂) have been observed during the initial three minutes of the 6MWT which is followed by an apparent steady-state.
- However, the direct relationship between HR and WV during prolonged walking has not been well studied.

Objective

To explore the relationship between changes in HR (i.e. cardiovascular demand) and WV during prolonged walking in people with moderate MSrelated disability.

Methods

- Nineteen participants with MS (Table 1) completed a 12-minute walk test (12MWT) on an oval track with an embedded instrumented walkway.
- WV data was collected with PKMAS Gait Analysis Software (Protokinetics, Havertown, PA) and parsed into 12, 1-minute time increments.
- HR was continuously measured with a Polar H7 wireless sensor (Polar Electro, Inc., Lake Success, NY) and average HR was calculated for each 1minute interval.
- Per-minute HR and WV data were first analyzed visually to identify gross patterns of change.
- Pearson correlation coefficients were used to evaluate the relationship between HR and time, WV and time, and the ratio of mean HR to mean WV (HR:WV) and time.

Acknowledgements This study was funded by a grant from the New Jersey Health Foundation

Results

Table 1. Participant Characteristics

Sex	14 women, 5 men
Age	57 (Range 35-65, SD 6.7)
Years since diagnosis	13.8 (Range 4-31, SD 8.7)
Disease Steps	3 (Range 1-3, IQR = 1)
Patient-Determined Disease Steps	3 (Range 1-5, IQR 1.5)
12-Item MS Walking Scale	63.1 (Range 35-90, SD 16.6)
Modified Fatigue Impact Scale (Total)	41.9 (Range 3-58, SD 12.3)

Figure 1. Walking Velocity x Time

Figure 3. Heart Rate : Walking Velocity Ratio x Time

Results

- No significant correlation was found between WV and time (figure 1). Visual analysis indicates that WV during the 12MWT followed an attenuated U-shaped pattern, similar to that found during 6MWT in people with MS.
- A significant linear correlation between HR and Time (r(10) = .828, p = .001) was found as illustrated in figure 2.
- A significant linear correlation between HR:WV and time (r= .928, p=.000) was found as illustrated in figure 3.

Conclusions

- A combination of decreasing WV in the presence of steady-state HR appears to have resulted in a significant positive correlation of HR:WV ratio over time in our sample of people with MS during the prolonged walking.
- The observation that a concomitant decline in HR did not accompany the decline in WV suggests that cardiovascular demand may have remained consistent at a lower work rate.
- The negative effect of fatigue on physical performance in people with MS is well-known; however, this data suggests the decline in performance during prolonged walking activity may also increase the cardiovascular demand.
- Further study is warranted to fully evaluate the effect of fatigue-related changes on the metabolic cost of walking using objective physiologic measurements to assess the metabolic cost of prolonged walking.
- A clearer understanding of these effects will enable rehabilitation professionals to better target the multiple contributors to the decline in performance during prolonged activities observed in people with MS.