Durable Efficacy of Alemtuzumab on Clinical and MRI Outcomes Over 6 Years in CARE-MS II Patients With Active RRMS With Relapse Between Courses 1 and 2

Barry Singer¹, Simon Broadley², Angel Chinea³, Mark S Freedman⁴, Guillermo Izquierdo⁵, Jan Lycke⁶, Basil Sharrack⁷, Brian Steingo⁸, Heinz Wiendl⁹, Sibyl Wray¹⁰, David H Margolin¹¹, Sourav Santra¹², Karthinathan Thangavelu¹¹, Aaron Boster¹³

on behalf of the CARE-MS II and CAMMS03409 Investigators

Presented by Barry Singer

¹MS Center for Innovations in Care, Missouri Baptist Medical Center, St Louis, MO, USA; ²School of Medicine, Gold Coast Campus, Griffith University, Australia; ³San Juan Multiple Sclerosis Center, San Juan, Puerto Rico; ⁴University of Ottawa and the Ottawa Hospital Research Institute, Ottawa, Ontario, Canada; ⁵Virgen Macarena University Hospital, Seville, Spain; ⁶University of Gothenburg, Gothenburg, Sweden; ⁷Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK; ⁸Fort Lauderdale Multiple Sclerosis Center, Fort Lauderdale, FL, USA; ⁹University of Münster, Münster, Germany; ¹⁰Hope Neurology MS Center, Knoxville, TN, USA; ¹¹Sanofi, Cambridge, MA, USA; ¹²Cytel, Cambridge, MA, USA; ¹³OhioHealth Neurological Physicians, Columbus, OH, USA
Disclosures

- **Barry Singer**: Speaking and/or consulting (Acorda, Bayer, Biogen, EMD Serono, Genentech, Novartis, Sanofi Genzyme, and Teva), and research support (Acorda, Biogen, MedImmune, Novartis, Roche, and Sanofi Genzyme)
- **Simon Broadley**: Honoraria for participation in advisory boards (Bayer-Schering, Biogen, Merck Serono, Novartis, and Sanofi Genzyme); conference travel sponsorship (Bayer-Schering, Biogen, Merck Serono, Novartis, and Sanofi Genzyme); speaker honoraria (Biogen and Sanofi Genzyme); and unencumbered research grant (Biogen)
- **Angel Chinea**: Speaking and/or consulting (Acorda, Allergan, Biogen, Genentech, Novartis, Sanofi Genzyme, and Teva); research support (Biogen and Novartis)
- **Mark S Freedman**: Honoraria or consulting fees (Actelion, Bayer Healthcare, Biogen, Canada Innovation, Chugai, EMD Canada, Hoffmann-La Roche, Merck Serono, Novartis, Sanofi Aventis, Sanofi Genzyme, and Teva); serving on advisory boards, board of directors or other similar group (Actelion, Bayer, Biogen, Hoffmann-La Roche, Merck Serono, Novartis, Opexa, and Sanofi Aventis); and participation in speaker’s bureau (Sanofi Genzyme)
- **Guillermo Izquierdo**: Speaking and/or advisory board honoraria (Almirall, Biogen, Merck Serono, Novartis, Roche, Sanofi Genzyme, and Teva)
- **Jan Lycke**: Lecture honoraria (Novartis) and; unconditional research support (Biogen, Novartis, and Teva)
- **Basil Sharrack**: Nothing to disclose
- **Brian Steingo**: Consulting and speaking fees and/or grant/research support (Acorda, Biogen, EMD Serono, Mallinckrodt, Novartis, Sanofi Genzyme, and Teva)
- **Heinz Wiendl**: Consulting and/or speaking fees (Bayer, Biogen, Behring, EMD Serono, Fresenius Medical Care, Merck Serono, Novartis, Sanofi Genzyme, Roche, and Teva); license fee payments (Huber-Verlaggrant); and grant/research support (Neotope Bioscience, Novartis, and PML Consortium)
- **Sibyl Wray**: Consultant, principal investigator, and/or speaker fees (Alkermes, Bayer, Biogen, EMD Serono, Genentech/Roche, Novartis, Sanofi Genzyme, and Teva)
- **Sourav Santra**: Employee of Cytel, Inc.
- **David H Margolin, Karthinathan Thangavelu**: Compensation as employees of Sanofi
- **Aaron Boster**: Consulting fees and/or fees for non-CME services (Biogen, Mallinckrodt, Medtronic, Novartis, Sanofi Genzyme, and Teva)
- **CARE-MS II (NCT00548405) and its extension study, CAMMS03409 (NCT00930553), w ere funded by Sanofi and Bayer HealthCare Pharmaceuticals
- Editorial and scientific support was provided by Darren P Baker, PhD, Steven Cavalier, MD, Luke Chung, MD, MPH, Alan Jacobs, MD, Colin Mitchell, PhD, and Jonathan P Valenzano, PharmD, of Sanofi. Additional editorial support for this presentation w as provided by Karen Pemberton, PhD and Panos Xenopoulos, PhD, of Envision Scientific Solutions, and w as funded by Sanofi

Rebif® is a registered trademark of EMD Serono Inc.
CARE-MS = Comparison of Alemtuzumab and Rebif® Efficacy in Multiple Sclerosis.
Alemtuzumab is a humanized anti-CD52 monoclonal antibody approved in >60 countries for the treatment of adults with relapsing forms of MS

Alemtuzumab significantly improved clinical and MRI outcomes versus SC IFNB-1a over 2 years in patients with an inadequate response to prior therapy (CARE-MS II trial)\(^1\)

- The most frequent AEs with alemtuzumab were infusion-associated reactions; other AEs of interest included autoimmune AEs\(^1\)

Most alemtuzumab patients who were followed through 6 years (2 years of core study plus 4 years in an extension) showed durable improvements in clinical and MRI outcomes\(^2\)\(^-\)\(^4\)

- This was achieved in the absence of continuous treatment; 50% did not receive any alemtuzumab retreatment or another DMT through 6 years

Relapses are not uncommon following the initiation of DMTs for MS

- 43% of patients who received SC IFNB-1a in CARE-MS II, relapsed in Year 1\(^5\)
- 23% relapsed in the year following initiation of natalizumab\(^6\)\(^,\)\(^a\)

The efficacy of alemtuzumab was evaluated in patients with relapse between Courses 1 and 2

\(^a\)As reported in its core clinical trial; AE=adverse event; DMT=disease-modifying therapy; SC IFNB-1a=subcutaneous interferon beta-1a

Proposed Mechanism of Action of Alemtuzumab: Distinct Patterns of Repopulation May Rebalance the Immune System

- The durable effects of alemtuzumab over 6 years in the absence of continuous treatment may be due to its mechanism of action\(^a\)

1. **SELECTION\(^1,2\)**

Alemtuzumab selectively binds CD52, an antigen that is highly expressed on the surface of T and B lymphocytes

- Rapid and robust depletion of T and B cells

2. **DEPLETION\(^1,2\)**

Alemtuzumab selectively binds CD52, an antigen that is highly expressed on the surface of T and B lymphocytes

- Rapid and robust depletion of T and B cells

3. **REPOPULATION\(^3-6\)**

Unique repopulation with Anti-inflammatory Immune Profile

- Th1 and Th17 cells (proinflammatory cytokine-producing cells)\(^3,4\)
- Conventional and plasmacytoid dendritic cells\(^5,b\)
- T\(_{reg}\) cells (suppressive function and anti-inflammatory cytokine producing cells)\(^3,4,6\)
- CD56\(^{bright}\) NK cells\(^5\)

\(^a\)The exact mechanism of action of alemtuzumab is not known. \(^b\)Based on analysis of 12 alemtuzumab-treated patients’ serum

NK=natural killer cell; Th1=type 1 T helper cell; Th17=type 17 T helper cell

CARE-MS II Core and Extension Study Design

- CARE-MS II was a phase 3 trial in patients with active RRMS who had an inadequate response (≥1 relapse after ≥6 months of treatment) to prior therapy¹
 - Open-label, rater-blinded extension study²

![Study Timeline Diagram]

- **24%** of alemtuzumab-treated patients relapsed between Courses 1 and 2
 - 83% of alemtuzumab-treated patients who relapsed between Courses 1 and 2 enrolled in the extension (93% of those who did not relapse)
 - 87% of those patients remained on study through Year 6 (88% of those who did not relapse)

²As-treated population; DMT=disease-modifying therapy; Y=year
Patients With or Without Relapse Between Alemtuzumab Courses 1 and 2 Receiving Additional Treatment

- 67% of patients who relapsed received additional treatment (alemtuzumab or another DMT)
 - 53% received only alemtuzumab retreatment, 7% only another DMT, and 7% both alemtuzumab and another DMT

Alemtuzumab Retreatment

<table>
<thead>
<tr>
<th>No. of Retreatments Following Core Study</th>
<th>With Relapse (24% of Patients)</th>
<th>Without Relapse (76% of Patients)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>40%</td>
<td>59%</td>
</tr>
<tr>
<td>1</td>
<td>33%</td>
<td>28%</td>
</tr>
<tr>
<td>2</td>
<td>20%</td>
<td>10%</td>
</tr>
<tr>
<td>3</td>
<td>2%</td>
<td>2%</td>
</tr>
<tr>
<td>4</td>
<td>5%</td>
<td>0%</td>
</tr>
</tbody>
</table>

- 60% received at least one alemtuzumab retreatment
- 41% received at least one alemtuzumab retreatment

aDue to rounding, percentages do not sum to 100%
b45% of patients who did not relapse received additional treatment (alemtuzumab or another DMT); 36% received only alemtuzumab retreatment, 4% only another DMT, and 5% both alemtuzumab and another DMT
Baseline Characteristics in Alemtuzumab-Treated Patients With and Without Relapse Between Courses 1 and 2

<table>
<thead>
<tr>
<th>Parameter</th>
<th>With Relapse (N=105)</th>
<th>Without Relapse (N=330)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years, mean (SD)</td>
<td>34.6 (8.8)</td>
<td>34.8 (8.2)</td>
</tr>
<tr>
<td>Female, n (%)</td>
<td>77 (73.3)</td>
<td>210 (63.6)</td>
</tr>
<tr>
<td>White, n (%)</td>
<td>96 (91.4)</td>
<td>296 (89.7)</td>
</tr>
<tr>
<td>EDSS score, mean (SD)</td>
<td>3.0 (1.4)</td>
<td>2.6 (1.2)</td>
</tr>
<tr>
<td>Years since initial relapse, mean (SD)</td>
<td>4.3 (2.7)</td>
<td>4.5 (2.7)</td>
</tr>
<tr>
<td>No. of relapses in prior 1 year, mean (SD)</td>
<td>1.9 (0.9)</td>
<td>1.6 (0.9)</td>
</tr>
<tr>
<td>No. of relapses in prior 2 years, mean (SD)</td>
<td>3.1 (1.4)</td>
<td>2.7 (1.1)</td>
</tr>
<tr>
<td>Gd-enhancing lesion count, mean (SD)</td>
<td>1.6 (3.1)</td>
<td>2.5 (6.7)</td>
</tr>
<tr>
<td>Patients with Gd-enhancing lesions, n (%)</td>
<td>41 (39.0)</td>
<td>140 (43.2)</td>
</tr>
<tr>
<td>BPF, mean (SD)</td>
<td>0.82 (0.02)</td>
<td>0.81 (0.02)</td>
</tr>
</tbody>
</table>

BPF=brain parenchymal fraction; EDSS=Expanded Disability Status Scale; Gd=gadolinium
Annualized Relapse Rate Markedly Improved After Course 2 of Alemtuzumab in Patients With Relapse Between Courses 1 and 2

With Relapse (24% of Patients)

- **Core Study**
 - Year 1: 1.2 (95% CI)
 - Year 2: 0.5
 - Year 3: 0.4
 - Year 4: 0.4
 - Year 5: 0.3
 - Year 6: 0.2

- **Extension Study**

Without Relapse (76% of Patients)

- **Core Study**
 - Year 1: 0
 - Year 2: 0.2
 - Year 3: 0.2
 - Year 4: 0.2
 - Year 5: 0.2
 - Year 6: 0.1

ARR=annualized relapse rate
Freedom From **Gd-Enhancing T1 Lesions**

With Relapse (24% of Patients)
- At baseline:
 - Alemtuzumab (with relapse between Courses 1 and 2), 61%
 - Alemtuzumab (without relapse), 57%

Without Relapse (76% of Patients)
- Each year through Year 6, most patients with and without relapse between Courses 1 and 2 were free of Gd-enhancing T1 lesions

Proportion free of Gd-enhancing lesions at baseline: Alemtuzumab (with relapse between Courses 1 and 2), 61% / Alemtuzumab (without relapse), 57%.

With Relapse (24% of Patients)

Without Relapse (76% of Patients)

- Each year through Year 6, most patients with and without relapse between Courses 1 and 2 were free of T2-hyperintense lesions.
Freedom From T1-Hypointense Lesions

• Each year through Year 6, most patients with and without relapse between Courses 1 and 2 were free of T1-hypointense lesions
Long-term CDI and CDW Outcomes Were Favorable in Patients With and Without Relapse Between Courses 1 and 2

CDW: ≥1-point EDSS increase (or ≥1.5 points if baseline EDSS=0) confirmed over 6 months
Confirmed disability improvement (CDI): ≥1-point EDSS decrease from baseline (patients with baseline score ≥2.0) confirmed over 6 months
The Proportion of Patients With Relapse Between Courses 1 and 2 Who Achieved NEDA Increased Through 6 Years

No evidence of disease activity (NEDA): absence of clinical disease activity (relapses and 6-month confirmed disability worsening [CDW]) and MRI disease activity (new Gd-enhancing T1 and new/enlarging T2 hyperintense lesions)
Alemtuzumab Durably Slowed Brain Volume Loss Over 6 Years in Patients With and Without Relapse Between Courses 1 and 2

With Relapse (24% of Patients)

- Course 2
 - Alemtuzumab 12 mg

Without Relapse (76% of Patients)

- Course 2
 - Alemtuzumab 12 mg

Median Yearly BPF Change, % (95% CI)
Conclusions

• Relapse is not uncommon following the initiation of a new MS treatment
 – Relapse rate between the indicated Courses 1 and 2 of alemtuzumab was similar to or less than other therapies, including high efficacy therapies

• Long-term clinical and MRI outcomes, including BVL, were similarly favorable in patients who did or did not relapse between Courses 1 and 2

• Relapse between Courses 1 and 2 is not indicative of subsequent limited treatment response
 – Although patients in this cohort more frequently received alemtuzumab beyond Course 2, retreatment was effective in managing their disease over 6 years

• The results also highlight the importance of administering the initial 2 courses of alemtuzumab to achieve optimal clinical benefit

• These findings suggest that alemtuzumab may offer durable efficacy in the absence of continuous treatment, which may be due to the distinct pattern of lymphocyte repopulation following treatment with alemtuzumab, and may lead to a rebalancing of the immune system
 – Additional mechanistic studies are required to establish this hypothesis

BVL=brain volume loss
CARE-MS and CAMMS03409 Study Group and Acknowledgments

<table>
<thead>
<tr>
<th>Argentina</th>
<th>Brin</th>
<th>Habek</th>
<th>Jankuljak</th>
<th>Kidemel-Piskač</th>
<th>Trkanjec</th>
<th>Vlacic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia</td>
<td>Boundy</td>
<td>Broadley</td>
<td>Dreyer</td>
<td>Hodgkinson</td>
<td>King</td>
<td>Macdonell</td>
</tr>
<tr>
<td>Austria</td>
<td>Leutmezer</td>
<td>Vass</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Belgium</td>
<td>Divé</td>
<td>Dubois</td>
<td>Sindic</td>
<td>Souray</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>Brazil</td>
<td>Callegaro</td>
<td>Ferreira</td>
<td>Martins (Marcio)</td>
<td>Martins (Maurer)</td>
<td>Tilbery</td>
<td></td>
</tr>
<tr>
<td>Canada</td>
<td>Ayotte</td>
<td>Brunet</td>
<td>Freedman</td>
<td>Grand'Maison</td>
<td>Jacques</td>
<td>Kremenchutsky</td>
</tr>
<tr>
<td>Croatia</td>
<td>Antonelli</td>
<td>Brinar</td>
<td>Habek</td>
<td>Jankuljak</td>
<td>Kidemel-Piskač</td>
<td>Trkanjec</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>Brichta</td>
<td>Kovarov a</td>
<td>Rektor</td>
<td>Talab</td>
<td>Talabov a</td>
<td></td>
</tr>
<tr>
<td>Denmark</td>
<td>Petersen</td>
<td>Ravnborg</td>
<td>Serensen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>France</td>
<td>Clanet</td>
<td>De Seze</td>
<td>Edan</td>
<td>Lubetzki</td>
<td>Moreau</td>
<td>Vemersch</td>
</tr>
<tr>
<td>Germany</td>
<td>Baum</td>
<td>Förch</td>
<td>Haas</td>
<td>Hemmer</td>
<td>Herrlinger</td>
<td>Köhler</td>
</tr>
<tr>
<td>Israel</td>
<td>Achiron</td>
<td>Kami</td>
<td>Vaknin-Dembinsky</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Italy</td>
<td>Bertolotto</td>
<td>Capra</td>
<td>Durelli</td>
<td>Ghезzi</td>
<td>Mancardi</td>
<td>Marroso</td>
</tr>
<tr>
<td>Jersey</td>
<td>Arroyo Mayayo</td>
<td>Montalban</td>
<td>Orellana-Guevara</td>
<td>Sanchez</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Netherlands</td>
<td>Lycke</td>
<td>Svanningsson</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poland</td>
<td>Czlonkowska</td>
<td>Kosubski</td>
<td>Selmaj</td>
<td>Stelmasiak</td>
<td>Szczudlik</td>
<td></td>
</tr>
<tr>
<td>Portugal</td>
<td>Koby’s</td>
<td>Martysynkevych</td>
<td>Nebych</td>
<td>Orzheshkovsky</td>
<td>Voloshina</td>
<td></td>
</tr>
<tr>
<td>Russia</td>
<td>Barantsevich</td>
<td>Belov a</td>
<td>Boyko</td>
<td>Gusev</td>
<td>Magzhanov</td>
<td>Malikov a</td>
</tr>
<tr>
<td>Russia (cont)</td>
<td>Yakupov</td>
<td>Zavalkishin</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serbia</td>
<td>Đinđić</td>
<td>Drulović</td>
<td>Nadji</td>
<td>Tonev</td>
<td>Vojnović</td>
<td></td>
</tr>
<tr>
<td>Spain</td>
<td>Arroyo Mayayo</td>
<td>Izquierdo Ayuso</td>
<td>Montalban</td>
<td>Orellana-Guevara</td>
<td>Sanchez</td>
<td></td>
</tr>
<tr>
<td>Sweden</td>
<td>Lycke</td>
<td>Svanningsson</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>United Kingdom</td>
<td>Coles</td>
<td>Compton</td>
<td>Giovannoni</td>
<td>Robertson</td>
<td>Rog</td>
<td>Scolding</td>
</tr>
<tr>
<td>United States</td>
<td>Abou Zeid</td>
<td>Agius</td>
<td>Bass</td>
<td>Bigley</td>
<td>Bomprenzi</td>
<td></td>
</tr>
<tr>
<td>United States (cont)</td>
<td>Boster</td>
<td>Bowen</td>
<td>Broy</td>
<td>Carter</td>
<td>Cascione</td>
<td>Cohen</td>
</tr>
<tr>
<td>United States (cont)</td>
<td>Edwards</td>
<td>Elias</td>
<td>Evans</td>
<td>Fabian</td>
<td>Fletcher</td>
<td>Ford</td>
</tr>
<tr>
<td>United States (cont)</td>
<td>Goodman</td>
<td>Gottesman</td>
<td>Gottschalk</td>
<td>Grazioli</td>
<td>Gudesblatt</td>
<td>Gupta</td>
</tr>
<tr>
<td>United States (cont)</td>
<td>Ionite</td>
<td>Janus</td>
<td>Javed</td>
<td>Jones</td>
<td>Jubel</td>
<td>Jung</td>
</tr>
<tr>
<td>United States (cont)</td>
<td>Krieger</td>
<td>Krockzyk</td>
<td>LaGanke</td>
<td>Lallana</td>
<td>Lathi</td>
<td>Lav a</td>
</tr>
<tr>
<td>United States (cont)</td>
<td>Mattsonatics</td>
<td>Miller</td>
<td>Minagar</td>
<td>Mitchell</td>
<td>Moses</td>
<td>Muley</td>
</tr>
<tr>
<td>United States (cont)</td>
<td>Picone</td>
<td>Remmel</td>
<td>Rizzi</td>
<td>Robertson</td>
<td>Roenn</td>
<td>Rothstein</td>
</tr>
<tr>
<td>United States (cont)</td>
<td>Singer</td>
<td>Spikol</td>
<td>Stein</td>
<td>Steingo</td>
<td>Thadani</td>
<td>Theots</td>
</tr>
<tr>
<td>United States (cont)</td>
<td>Vincent</td>
<td>Vollmer</td>
<td>Waldman</td>
<td>Weiner</td>
<td>Wendt</td>
<td>Wingerchuk</td>
</tr>
</tbody>
</table>

Neurology Steering Committee
- Compston (UK)
- Arnold (CA)
- Cohen (US)
- Coles (UK)
- Confavreux (FR) (in memoriam)
- Fox (US)
- Hartung (DE)
- Hvorové (CZ)
- Selmaj (PL)
- Weiner (US)

Data Monitoring Committee
- Clifford (US)
- Barkhov (ND)
- Snydman (US)
- DeGroot (US)
- Cines (US)
- D’Agostino (US)
- Antel (CA)
- Panitch (US) (in memoriam)

Relapse Adjudication Panel
- Greenberg (US)
- Kraus (AT)
- Limroth (DE)
- Markowitz (US)
- Naismith (US)
- Tabby (US)

MRI Analyses
- Arnold; NeuroRX (CA)
- Fisher; CCF (US)