Preliminary Results of the OPERA I and OPERA II Open-Label Extension Study

RT Naismith, M Cascione, LME Grimaldi, SL Hauser, L Kappos, X Montalban, J Wolinsky, P Chin, H Garren, L Julian, F Model, D Honeycuff

OPERA I, NCT01247324; OPERA II, NCT01412333

Presented at the 2017 Annual Meeting of the Consortium of Multiple Sclerosis Centers (CMSC); New Orleans, LA, USA; May 24–27, 2017

Platform presentation number: DX07
Disclosures

Robert T Naismith reports financial relationships with Acorda, Alkermes, Bayer, Biogen, EMD Serono, Genentech, Genzyme, Novartis, and Teva.

Mark Cascione has received research support from Novartis, Genentech, Biogen, and Genzyme. He has also participated in speakers bureaus for Acorda, Sanofi-Genzyme, Genentech, EMD Serono, Novartis, and Biogen.

Luigi ME Grimaldi’s institution, the Fondazione Istituto “G. Giglio” of Cefalù (Italy), has received research support and payments that were used exclusively for research support for Dr. Grimaldi’ activities as principal investigator or member or steering committees in trials sponsored by Actelion, Alexion, Bayer HealthCare Pharmaceuticals, Biogen, F. Hoffmann-La Roche Ltd, Genzyme, Merck, Mitsubishi Tanabe Pharma Corporation, Novartis, Receptos, Sanofi and Teva. He has received speaking honoraria and travel expense reimbursement for participation in scientific meetings from Bayer, Biogen, Genzyme, Merck, Novartis, F. Hoffmann-La Roche Ltd, Sanofi, and Teva.

Stephen L Hauser serves on the board of trustees for Neurona, and on scientific advisory boards for Annexon, Syntech, and Bionure. He has also received travel reimbursement and writing assistance from F. Hoffmann-La Roche Ltd for CD20-related meetings and presentations.

Ludwig Kappos’ institution, the University Hospital Basel, has received research support and payments that were used exclusively for research support for Prof. Kappos’ activities as principal investigator and member or chair of planning and steering committees or advisory boards in trials sponsored by Actelion, Addex, Almirall, Bayer HealthCare Pharmaceuticals, CLC Behring, Genentech, Inc., GenNeuro SA, Genzyme, Merck Serono, Mitsubishi Pharma, Novartis, Octapharma, Ono Pharma, Pfizer, Receptos, F. Hoffmann-La Roche Ltd, Sanofi, Sanoﬁ, Siemens, Teva, UCB and XenoPort; license fees for Neurostatus products; and research grants from the Swiss MS Society, the Swiss National Research Foundation, the European Union, the Gianni Rubatto Foundation, the Novartis Research Foundation and the Roche Research Foundation.

Xavier Montalban has received speaking honoraria and travel expense reimbursement for participation in scientific meetings and has been a steering committee member or participated in advisory boards of clinical trials for Actelion, Almirall, Bayer, Biogen, Genzyme, Merck, Novartis, Octapharma, Receptos, F. Hoffmann-La Roche Ltd., Sanofi, Teva and Trophos.

Jerry Wolinsky has served on advisory boards and data monitoring or steering committees and has had consulting agreements with the following: AbbVie, Alkermes, Bayer HealthCare, Clene Nanomedicine, Celgene, Forw ard Pharma A/S, MedDay, Novartis, Roche/Genentech, Sanofi-Genzyme, Takeda, Teva Pharmaceuticals; royalties are received for out licensed monoclonal antibodies through UThealth from Millipore Corporation.

Peter Chin is an employee and shareholder of Genentech, Inc.

Hideki Garren is an employee and shareholder of Genentech, Inc.

Laura Julian is an employee and shareholder of Genentech, Inc.

Fabian Model is an employee and shareholder of F. Hoffmann-La Roche Ltd.

David Honeycutt has received honoraria for promotional speaking programs, and as a consultant for Biogen-Idec, Teva, Serono, Bayer, Sanofi-Genzyme, Novartis, Pfizer & Acorda. He is or has participated in/received compensation for clinical trials for Biogen-Idec, Teva, Serono, Bayer, Sanofi-Genzyme, Novartis, Alkermes, Acorda, Medimmune, Opexa, Genentech-Roche, and the National Institutes of Health.

The study was sponsored by F. Hoffmann-La Roche Ltd. Writing and editorial assistance for this presentation was provided by Health Interactions, Inc, USA and Articulate Science, LLC, UK, and funded by F. Hoffmann-La Roche Ltd, Basel, Switzerland.
Objective

• To provide a preliminary update on the clinical and MRI metrics of disease activity, including ARR, T1 Gd-enhancing lesions, and new/enlarging T2 lesions from the first year of the open-label extension (OLE) phase of the OPERA studies.
OPERA I and OPERA II trials
Study design\(^1\)

Double-blind, double-dummy treatment period\(^a\)

OCRELIZUMAB 600 mg

- **Dose 1**
- **Dose 2**
- **Dose 3**
- **Dose 4**

IFN β-1a 44 µg

Dosed 44 µg SC three times weekly

Patients discontinuing treatment enter safety follow-up

Open-label extension phase\(^b\)

\(^a\) Patients in the ocrelizumab group received placebo injections three times weekly, while patients in the IFNβ-1a group received placebo infusions at Days 1 and 15 and Weeks 24, 48 and 72; OLE to provide ongoing safety, tolerability and efficacy data; OLE phase was not mandatory; *Continued monitoring occurs if B cells are not repleted.

\(^b\) BL, baseline; EDSS, Expanded Disability Status Scale; IFN, interferon; IV, intravenous; OLE, open-label extension; RMS, relapsing multiple sclerosis; SC, subcutaneous.

Pooled OPERA I and OPERA II
Baseline demographics and disease characteristics

<table>
<thead>
<tr>
<th>Double-blind treatment period</th>
<th>IFN β-1a 44 μg (n=829)</th>
<th>OCR 600 mg (n=827)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, yrs, mean (SD)</td>
<td>37.2 (9.2)</td>
<td>37.1 (9.2)</td>
</tr>
<tr>
<td>Female, n (%)</td>
<td>552 (66.6)</td>
<td>541 (65.4)</td>
</tr>
<tr>
<td>Time since MS symptom onset, yrs, mean (SD)</td>
<td>6.5 (6.1)</td>
<td>6.7 (6.2)</td>
</tr>
<tr>
<td>Time since MS diagnosis, yrs, mean (SD)</td>
<td>3.9 (4.9)</td>
<td>4.0 (4.9)</td>
</tr>
<tr>
<td>Relapses in previous 12 months, mean (SD)</td>
<td>1.3 (0.7)</td>
<td>1.3 (0.7)</td>
</tr>
<tr>
<td>Previously untreated, n (%)a</td>
<td>605 (73.0)</td>
<td>604 (73.0)</td>
</tr>
<tr>
<td>EDSS, mean (SD)</td>
<td>2.8 (1.3)</td>
<td>2.8 (1.3)</td>
</tr>
<tr>
<td>Number of T1 Gd-enhancing lesions, mean (SD)</td>
<td>1.9 (5.0)</td>
<td>1.8 (4.6)</td>
</tr>
<tr>
<td>Number of T2 lesions, mean (SD)</td>
<td>51.0 (37.8)</td>
<td>50.1 (38.8)</td>
</tr>
</tbody>
</table>

ITT
- aUnreted with disease-modifying therapy in 2 years prior to study entry.
- EDSS, Expanded Disability Status Scale; Gd, gadolinium; IFN, interferon; ITT, intention to treat; MS, multiple sclerosis; N/E, new or enlarging; OCR, ocrelizumab.
Ocrelizumab was more effective than interferon β-1a in the Phase III OPERA I and OPERA II trials in relapsing MS

Pooled OPERA studies: results from the 96-week double-blind treatment period

<table>
<thead>
<tr>
<th></th>
<th>IFN β-1a 44 μg (n=829)</th>
<th>OCR 600 mg (n=827)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARR at Week 96 (95% CI)</td>
<td>0.29 (0.25–0.34)</td>
<td>0.16 (0.13–0.19)</td>
</tr>
<tr>
<td>Relative reduction (p-value)</td>
<td></td>
<td>47% (<0.001)</td>
</tr>
<tr>
<td>Mean no. of T1 Gd-enhancing lesions per MRI scan by Week 96 (95% CI)</td>
<td>0.36 (0.28–0.45)</td>
<td>0.02 (0.01–0.03)</td>
</tr>
<tr>
<td>Relative reduction (p-value)</td>
<td></td>
<td>94% (<0.001)</td>
</tr>
<tr>
<td>Mean no. of new/enlarging T2 hyperintense lesions per MRI scan by Week 96 (95% CI)</td>
<td>1.68 (1.44–1.97)</td>
<td>0.33 (0.28–0.39)</td>
</tr>
<tr>
<td>Relative reduction (p-value)</td>
<td></td>
<td>80% (<0.001)</td>
</tr>
</tbody>
</table>

In the pooled OPERA I and OPERA II studies, ocrelizumab was more effective than IFN β-1a on clinical and imaging metrics of disease activity in patients with relapsing MS

*The pooled OPERA outcomes shown here pertain to the analyses in this presentation and are not ordered per the hierarchical statistical analysis plan.

ARR, annualized relapse rate; Gd, gadolinium; IFN, interferon; MS, multiple sclerosis.

In the open-label extension phase, the first 600-mg dose of ocrelizumab was administered as two 300-mg infusions given two weeks apart

- Patients received methylprednisolone prior to each infusion
- Optional prophylactic treatment with an analgesic/antipyretic and IV or oral antihistaminic 30 to 60 minutes before an infusion was offered to all patients

Patients in the ocrelizumab group received placebo injections three times weekly, while patients in the IFN β-1a group received placebo infusions at Days 1 and 15 and Weeks 24, 48 and 72; OLE was not mandatory. Patients who declined to participate in the OLE entered safety follow-up. *Continued monitoring occurs if B cells are not repleted.

IFN, interferon; IV, intravenous; OLE, open-label extension; SC, subcutaneous.

Adapted from Kuhelj R, et al. EAN 2016:Poster P11192.
OPERA I and OPERA II open-label extension phase
Patient disposition

Pooled OPERA I and OPERA II

Randomized to double-blind treatment (N=1656)

- IFN β-1a (n=829)
 - Completed to Week 96 (n=660; 80%)
 - Entered OLE phase (n=623; 94%)
 - Completed OLE Year 1 (n=584; 93.7%)

- Ocrelizumab (n=827)
 - Completed to Week 96 (n=726; 88%)
 - Entered OLE phase (n=702; 97%)
 - Completed OLE Year 1 (n=657; 93.6%)

Clinical cut off date, January 20, 2016.
IFN, interferon; OLE, open-label extension.
Pooled OPERA I and OPERA II open-label extension phase

Patient demographics and disease characteristics

Pooled OPERA studies: results from the 96-week double-blind treatment period

<table>
<thead>
<tr>
<th></th>
<th>IFN β-1a 44 μg/OCR 600 mg (n=623)</th>
<th>OCR 600 mg/OCR 600 mg (n=702)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, yrs, mean (SD)</td>
<td>39.3 (9.2)</td>
<td>39.2 (9.1)</td>
</tr>
<tr>
<td>Female, n (%)</td>
<td>408 (65.5)</td>
<td>454 (64.7)</td>
</tr>
<tr>
<td>Time since MS symptom onset, yrs, mean (SD)</td>
<td>8.3 (6.1)</td>
<td>8.5 (6.1)</td>
</tr>
<tr>
<td>Time since MS diagnosis, yrs, mean (SD)</td>
<td>5.7 (4.8)</td>
<td>5.8 (4.9)</td>
</tr>
<tr>
<td>EDSS, mean (SD)</td>
<td>2.7 (1.5)</td>
<td>2.6 (1.3)</td>
</tr>
</tbody>
</table>

The demographics and disease characteristics of the patients who entered the open-label extension phase of the OPERA studies were well balanced.

Demographics and disease characteristics at Week 96 of the double-blind treatment period are considered baseline for the OLE phase. EDSS, Expanded Disability Status Scale; IFN, interferon; MS, multiple sclerosis; OCR, ocrelizumab; OLE, open-label extension.
Pooled OPERA I and OPERA II
Preliminary data: ARR in core study Years 1 and 2 and OLE Year 1

Patients switching from IFN β-1a to OCR

Patients continuing OCR treatment

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Patients</th>
<th>ARR(^a,b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IFN β-1a 44 µg</td>
<td>Core Yr 1</td>
<td>0.284</td>
</tr>
<tr>
<td>IFN β-1a 44 µg</td>
<td>Core Yr 2</td>
<td>0.212</td>
</tr>
<tr>
<td>IFN β-1a 44 µg/OCR 600 mg</td>
<td>OLE Yr 1c</td>
<td>0.100</td>
</tr>
<tr>
<td>OCR 600 mg</td>
<td>Core Yr 1</td>
<td>0.145</td>
</tr>
<tr>
<td>OCR 600 mg</td>
<td>Core Yr 2</td>
<td>0.106</td>
</tr>
<tr>
<td>OCR 600 mg/OCR 600 mg</td>
<td>OLE Yr 1c</td>
<td>0.128</td>
</tr>
</tbody>
</table>

\(^a\)The total number of relapses for all patients in the treatment group divided by the total patient-years of exposure to that treatment; \(^b\)Core Yr 1 and Core Yr 2 data include the ITT population and show the adjusted ARR calculated by negative binomial regression and adjusted for baseline EDSS score (<4.0 vs ≥4.0), and geographic region (US vs ROW); OLE Yr 1 data include the OLE ITT population and show the unadjusted ARR; \(^c\)Clinical cut off date, January 20, 2016.

ARR: annualized relapse rate; EDSS: Expanded Disability Status Scale; IFN: interferon; ITT: intention to treat; OCR: ocrelizumab; OLE: open-label extension; PY: patient years; ROW: rest of the world.
Pooled OPERA I and OPERA II
Preliminary data: number of T1 Gd-enhancing lesions in core study at Weeks 48 and 96 and OLE Week 48

Patients switching from IFN β-1α to OCR

Patients continuing OCR treatment

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Week 48 (n=691)</th>
<th>Week 96 (n=646)</th>
<th>OLE Week 48b (n=573)</th>
<th>Week 48 (n=750)</th>
<th>Week 96 (n=718)</th>
<th>OLE Week 48b (n=639)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IFN β-1α 44 µg Core</td>
<td>0.26</td>
<td>0.48</td>
<td>0.01</td>
<td>0.01</td>
<td>0.02</td>
<td>0.00</td>
</tr>
<tr>
<td>IFN β-1α 44 µg Core</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IFN β-1α 44 µg/OCR 600 mg OLE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OCR 600 mg Core</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OCR 600 mg Core</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OCR 600 mg OLE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total no. of lesions

- 236
- 317
- 4
- 8
- 12
- 3

*aCore Week 48 and Core Week 96 data include the ITT population; OLE Week 48 data include the OLE ITT population; bClinical cut-off date, January 20, 2016.
Gd, gadolinium; IFN, interferon; ITT, intention to treat; OCR, ocrelizumab; OLE, open-label extension.*
Pooled OPERA I and OPERA II

Preliminary data: number of N/E T2 lesions in core study at Weeks 24-48 and 48-96 and OLE Weeks 0-48

Patients switching from IFN β-1α to OCR

<table>
<thead>
<tr>
<th>Total no. of lesions</th>
<th>Mean number of lesions per MRI scan<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>IFN β-1α 44 µg Core Week 24-48 (n=694)</td>
<td>1.00</td>
</tr>
<tr>
<td>IFN β-1α 44 µg Core Week 48-96 (n=650)</td>
<td>2.17</td>
</tr>
<tr>
<td>IFN β-1α 44 µg/OCR 600 mg OLE Week 0-48<sup>b,c</sup> (n=577)</td>
<td>0.37</td>
</tr>
</tbody>
</table>

Patients continuing OCR treatment

<table>
<thead>
<tr>
<th>Total no. of lesions</th>
<th>Mean number of lesions per MRI scan<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>OCR 600 mg Core Week 24-48 (n=754)</td>
<td>0.06</td>
</tr>
<tr>
<td>OCR 600 mg Core Week 48-96 (n=720)</td>
<td>0.05</td>
</tr>
<tr>
<td>OCR 600 mg/OCR 600 mg OLE Week 0-48<sup>b,c</sup> (n=644)</td>
<td>0.09</td>
</tr>
</tbody>
</table>

^aCore Week 24-48 and Core Week 48-96 data include the ITT population; OLE Week 0-48 data include the OLE ITT population; ^bDue to lack of Week 24 assessment, OLE Week 0-48 data include initial residual T2 accumulation; ^cClinical cutoff date, January 20, 2016.

IFN, interferon; ITT, intention to treat; N/E, new or enlarging; OCR, ocrelizumab; OLE, open-label extension.
Conclusions

• More than 94% of patients who completed the double-blind treatment period of the OPERA studies entered the OLE phase and reached the 48-week OLE milestone.

• Patients who switched from interferon beta-1a to ocrelizumab in the OLE phase experienced reductions in ARR, T1 Gd-enhancing lesions and new/enlarging T2 lesions.
 – These outcomes are consistent with patients who received ocrelizumab in the double-blind treatment period of the OPERA studies.

• The beneficial effects of ocrelizumab during the double-blind treatment period persisted in patients who continued on ocrelizumab during the OLE phase, demonstrating the sustained benefit of ocrelizumab treatment.

• Additional data from the OPERA I and OPERA II OLE phase are forthcoming, including metrics of disease progression.

ARR, annualized relapse rate; Gd, gadolinium; OLE, open-label extension.
Acknowledgments: investigators and patients involved in the OPERA I study

ARGENTINA
Instituto Medico Especializado Fundacion Rosario de Neurorehabiliacion Hospital Epistral
AUSTRALIA
Royal North Shore Hospital
AUSTRIA
Koventospital Barmherzige Bruder
BELGIUM
Cliniques Universitaires Saint-Luc Hennin A2 Sint-Jan
BRAZIL
Hospital das Clínicas Clínica Neurologica e Neurocirúrgica de Joinville Hospital Mae de Deus
BULGARIA
MHAT ‘Avis Medical’ Military Medical Academy- MHAT MHA ‘Naum’ EAD First MHAT – Sofia AD MHAT Takuda Hospital Sofia AD
CHILE
Hospital Carlos Van Buren
CZECH REPUBLIC
Nemocnice Jihlava Fakultní nemocnice Hradec Králové Pardubicka krajní nemocnice a.s. Varnsdorf fakultní nemocnice v Paze Fakultní nemocnice u s. Anny Krajní zdravotnú s.r.o. Nemocnica Teplice o.z.
ESTONIA
West Tallinn Central Hospital Tartu University Hospital
FINLAND
Finn-Med Tullikim Oy
FRANCE
Hospital Central – CHU de Nancy CHU de Nîmes Hopital Carremerau CHU Hopital Gabriel Montpied Hopital Hauteperre – CHU Strasbourg Groupe Hospitalier Pellegrin
GERMANY
HUNGARY
Fovarosi Onkormanyzat Jahn Ferenc Del-Pestl Vasany Koörs Kórház Semmelweis Egyetem AOK Synexus Magyarszorg Kft.
ISRAEL
Chaim Sheba Medical Center
ITALY
Azienda Ospedaliero di Padova Fondazione San Raffaele del Monte Tabor Azienda Ospedaliero San Antonio Abate Azienda Ospedaliero Sant’Andrea Università di Roma La Sapienza
LATVIA
Maritime Medicine Centre of Latvia Hospital of Vecmīlgrāvis P. Stradiņš Clinical University Hospital
LITHUANIA
Kaunas Clinics Public Institution Klaipeda University Hospital Public Institution Vilnius University Hospital Santarukis Clinic Public Insti
MEXICO
Hospital Universitario Dr. Jose Eleuterio Gonzalez Grupo Medico Camino S.C.
NETHERLANDS
St Antonius Ziekenhuis Nieuwegein
NETHERLANDS
Nemocnice Jihlava Fakultní nemocnice Hradec Králové Pardubicka krajní nemocnice a.s. Varnsdorf fakultní nemocnice v Paze Fakultní nemocnice u s. Anny Krajní zdravotnú s.r.o. Nemocnica Teplice o.z.
NORWAY
St Antonius Ziekenhuis Nieuwegein
PORTUGAL
Hospital de Braga
RUSSIA
FSBI ‘Siberian Regional Medical Centre of FMBA of Russia’ SHK Kemerovo Regional Clinical Hospital MMA of Ministry of Defense of Russia named after S.M. Kirov Regional Multiscopic Centre E/a CC ECM Efreiyaniko SH Sverdlovsk Regional Clinical Hospital #1 Central Clinical Hospital #2 named after N.A. Semashko MRC for Oncology and Neurology ‘Biotherapy’ City Multifield Hospital No.2 Reg. Sq. of Health Care Smolensk Regional Clinical Hospital Clinical Hospital #93 Samara State Medical University
SIBERIA
Military Medical Academy
SLOVAKIA
Universitná nemocnica Bratislava Nemocnica sv. Cyril a Metoda Uni Bratislava Nemocnica Vrútkov Fakultná nemocnica s poliklinikou Žilina FN Bratislava Nemocnica Stare Mesto
SOUTH AFRICA
Parktown Hospital CC Coetzee Inc.
SOUTH AFRICA
Medizinische Fakultät der Universität Rostock Klinik fuer Nuklearmedizin
SPAIN
Hospital de Basurto Universitaetsklinikum Dresden Siever Arno Asklepios Klinik Barmbek Jüdisches Krankenhaus Berlin Universitaetsklinikum Tuebingen
SWITZERLAND
Odspedale Cívico Universitatsklinik Basel
TUNISIA
Hopital Universitaire Fattouma Bourguiba
UKRAINE
UNITED KINGDOM
The Walton Centre for Neurology and Neurosurgery Royal London Hospital
UNITED STATES
Neurology Associates PA Massachusetts General Hospital NeuroTherapeutics Inc CMC - Neuroscience and Spine Institute Albert Einstein Medical Center University of Texas Health Science Center of Houston Neuro-Therapeutics Inc Scripps Clinic Asken Clinical Research of Florida Fletcher Allen Health Care OMRF Multiple Sclerosis Center of Excellence American Health Network of Indiana LLC MS Center of Southern California MultiCare Research Institute Southern California Permanente Medical Group 21st Century Neurology Dent Neurosciences Research Center Inc Mercy Medical Group Health First Physicians Inc Northwestern University University of New Mexico University of South Florida Providence Multiple Sclerosis Center Consultants In Neurology Ltd Miami Research Associates University of Pittsburgh The MS Center of Advance Neurology and Pain Washington University - PARENE Bhupesh Dhenia MD P.A On Site Clinical Solutions LLC University Neurology Inc University of Nebraska Medical Center University of California at San Francisco Mercy Hospital St. Louis Emory University Shepherd Center Inc The MS Center for Innovations In Care The Ohio State University Wexner Medical Center Minneapolis Clinic of Neurology Michigan Neurology Associates PC Michigan Institute for Neurological Disorders

We would also like to thank NeuroRx Research (Montreal, QC, Canada) for evaluation of MRI scans, and the following members of the independent data monitoring committee for performing data analysis and safety monitoring:

Stephen C. Reingold, PhD (Chair)
Magnhild Sandberg-Wollheim, MD, PhD (Vice Chair)
Frederik Barkhof, MD
Scott Evans, PhD
Henry F. McFarland, MD
Thomas Dörner, MD
Acknowledgments: investigators and patients involved in the OPERA II study

ARGENTINA
STAT Research S.A.
ALPI Inst. De Rehabilitacion Marcelo Fitte

BELARUS
Vitebsk Regional Clinical Hospital
City Clinical Hospital No 9
Grodna Regional Clinical Hospital
Vitebsk Regional Diagnostic Center

BELGIUM
UZ Antwerp

BOSNIA AND HERZEGOVINA
University Clinic Centre Sarajevo
University Hospital Center Tuzla

BRAZIL
Santa Casa de Misericordia de Beilo Horizonte Hospital Hospital Barao Galfre e Guinle Hospital das Clinicas da Facultade de Medicina da UNICAMP

BULGARIA
Fitel M.H.A. Sofia AD
UMHAT-’Alexandropolis’ EAD
MHAH ‘Aristoteliana’ EAD
MHAH Sv. Naum’ EAD

CANADA
Hôpital Maisonneuve-Rosemont
MUCH - Montreal Neurological Institute & Hospital
University of Alberta
The Ottawa Hospital - General Campus
Recherche SEMUS
Clinique Neurofuturals
Vancouver Hospital - UBC Hospital Site
Multiple Sclerosis Clinic

CROATIA
University Hospital Dubrova
Clinical Hospital Centre Zagreb
General Hospital “Pula”
General Hospital Varazdin

CZECH REPUBLIC
Fakultni nemocnice Brno
Neuropod s.r.o.
Neurologicka klinika

FRANCE
CHU toulouse - Hôpital Purpan
Hôpital Paul Bichat
Hôpital Saint-Eloi
Hôpital General
Groupe Hospitalier Pitié-Salpétrière
Hôpital Maloures Blandine
Hôpital Neurologique Pierre Wertheimer

GERMANY
Universitätsklinikum Düsseldorf
Klinikum rechts der Tu München Praxis DiPL med Baden-Baden Klinikum der Johann Wolfgang Goethe-Universität Klinikum Großhadern der LMU Zentrum fuer ambulante Neurologie Michael Lang University Hospital of Heidelberg Sanit Gertrauden Kranchenhaus Neurologische Praxis Bonn

IRELAND
St Vincent’s University Hospital

ITALY
Ospedale Generale Regionale F. Di Fiore Ospedale Civile di Montichiari Azienda Ospedaliera Universitaria Policlinica Tor Vergata RISCC Ospedale Casa Sollievo della Sofferenza Azienda Ospedaliera Universitaria Ospedali Riuniti Fondazione IRCCS Istituto San Raffaele - G. Giuri Cefal Ospedale degli Infermi Fondazione IRCCS Istituto Neurologo Carlo Besta Policlinico Universitario Agostino Gemelli Azienda Ospedaliera Universitaria San Martino

MEXICO
Mexico Centre for Clinical Research Hospital Angeles Culiacan Hospital CIMA Chihuahua Hospital Mexico Americano SC Instituto Biomecanica de Investigacion AC Clinical Research Institute

NORWAY
Haukeland Universitetssykehus

POLAND

RUSSIA
SBE of Némy Novgorod region ‘City Clinical Hospital #3’ City Clinical Hospital # 4 State Healthcare Institution ‘Terriitorial Clinical Hospital’ KSUM Interregional Clinical Diagnostic Centre Saratov State Medical University of Rosszarav City Clinical Hospital #2 SEHPE Saint Petersburg SMU Roszarav n.a. I.Pavlov Perm SMA n.a. academ. E.A. Wagner

SLOVAKIA
FNPD F.D. Roosevelta MUDr. Beata Dupejova Neurologicka ambulancia s.r.o Vseobecna nemocnica s poliklinikou Levoca a.s.

SPAIN
Hospital Universitario Clinico San Carlos HU Carlos Haya HU Clinica U de Valencia Hospital del Mar Hospital Universitario de Bellvitge Hospital Universitari Vall d’Hebron Hospital General Univ. de Alicante Hospital Universitario de Girona Dr. Josep Trueta Institut Catala d’Oncologia Hospital Germans Trias i Pujol Hospital General Universitaria Gregorio Maranon

SWEDEN
Sahlgrenska Sjukhuset Karolinska Universitetssjukhuset Solna Karolinska Universitetssjukhuset Huddinge Norlands Universitetssjukhus

TURKEY
Istanbul Elin University Medical Fac. Haseki Training and Research Hospital Karadeniz Technical Uni. Med. Fac. Kocaeli University Medical Faculty Hacettepe University Medical Faculty Istanbul University Cerrahpasa Medical Faculty Ondokuz Mayis Univ. Med. Fac. Ege University Medical Faculty

UKRAINE
Regional Clinical Hospital State Institution V.K. Gusak Institute of Urgent and Recover Mun Med Proph Inst “Chernihiv Reg.Hosp.” Road Clinical Hospital of Donetsk Site

UNITED KINGDOM
Royal Devon and Exeter Hospital (Wolverton) City General Hospital Manchester Hospital Kings College Hospital

UNITED STATES
Alzheimer Neurology Center of San Antonio University Of Michigan Health System Minneapolis Clinic of Neurology Raleigh Neurology Associates PA Bhupesh Dhenia MD PA Stanford University Medical Center Empire Neurology PC MS Center of Atlanta Share Neurology PA Central Texas Neurology Consultants Univeristy of Texas Southwestern Medical Center Integra Clinical Research LLC Hope Research Institute LLC University of Rochester Medical Center Assoc. Neurologists of Southern Connecticut PC Phoenix Neurological Associates Ltd MS Comprehensive Care Center Josephson Wallack Munshawer Neurology PC Rutgers New Jersey Medical School Neurology and Neuroscience Associates Inc Advanced Neurosciences Institute Baylor College of Medicine Neurological Services of Orlando Lovelace Scientific Resources Inc Wayne State University SUNY at Stony Brook Steward St Elizabeth’s Medical Center University of Kansas Medical Center Advanced Neurosciences Research LLC University of Karolinska Collaborative Neurosciences Network Inc Well Carent Medical College-New York Presbyterian Hospital Holy Name Hospital The Neurological Institute Swedish Neuroscience Institute University of Massachusetts Memorial Medical Center University of South Florida MidAmerica Neuroscience Institute University of Miami Inffinity Clinical Research LLC Associates in Neurology PSC Abington Neurological Associates Territory Neurology and Research Institute Styl Wynn MD Neurology PC Neurology Associates PA South Shore Neurologiac Associates PC

We would also like to thank NeuroRx Research (Montreal, QC, Canada) for evaluation of MRI scans, and the following members of the independent data monitoring committee for performing data analysis and safety monitoring:

Stephen C. Reingold, PhD (Chair)
Magnhild Sandberg-Wollheim, MD, PhD (Vice Chair)
Hans-Peter Hartung, MD
Kottil Rammohan, MD
Anthony Traboulsee, MD

Bernhard Hemmer, MD

Ludwig Kappos, MD
Fried Lubin, MD
Xaver Montabon, MD
Kathrin Rammohan, MD
Krzysztof Selimir, MD
Anthony Traboulsee, MD
Jerry Wollnik, MD

Stephen Arnold, MD
Amil Bar-Or, MD
Giancarlo Comi, MD
Xavier Montabon, MD
Kathrin Rammohan, MD
Krzysztof Selimir, MD
Anthony Traboulsee, MD
Jerry Wollnik, MD