ALABAMA AT BIRMINGHAM Knowledge that will change your world

Purpose

Pediatric onset multiple sclerosis (POMS) accounts for up to 10% of all multiple sclerosis cases, and affects approximately 10,000 children in the United States with an additional 10,000 15,000 children to demonstrating symptoms indicative of a POMS diagnosis. Children with **POMS** have higher relapse rates and reach irreversible disease status an average of 10 years earlier than adults with multiple sclerosis. Health behaviors such as physical activity, diet, and sleep may have potential disease modifying effects in this group, as adults with multiple sclerosis have demonstrated similar benefits from interventions targeting health behaviors.

Methods

We identified papers by searching three electronic databases (PubMed, GoogleScholar, and CINAHL). Search terms included: pediatric multiple sclerosis OR pediatric onset multiple sclerosis OR POMS AND health behavior OR physical activity OR sleep OR diet OR nutrition OR obesity. Papers were included in this review if they were published in English, referenced nutrition, diet, obesity, sleep, exercise, or physical activity, and included pediatric-onset multiple sclerosis as a primary population.

EXERCISE NEUROSCIENCE RESEARCH LABORATORY

E. Morghen Sikes, MS OTR/L, Jayne M. Ness, MD, PhD, Rob W. Motl, PhD

Reference number	Author, year	Purpose	Results
26	McDonald et al, 2016	Determine if salt intake is associated with POMS risk	No association between salt intake and POMS risk
27	Pakpoor et al, 2017	Determine association between dietary factors and POMS	POMS vs controls: POMS are less likely to have insufficient iron No difference in fat, protein, carbohydrates, sugars, fruits, or vegetables
28	Chitnis et al, 2016	Evaluate contribution of BMI and puberty for risk and age of onset of POMS	POMS had earlier puberty and higher BMI
29	Langer-Gould et al, 2013	Determine whether obesity is a risk factor for development of POMS or CIS	\uparrow BMI = \uparrow risk for demyelination
30	Nourbakhsh et al, 2016	Determine if salt intake is associated with time to relapse in POMS	No association between salt intake and relapse rate
31	Gianfrancesco et al, 2017	Determine association between vitamin D, BMI, and POMS using genetic risk scores	Vitamin D associated with increased odds of POMS Significant association between BMI genetic risk
			score and POMS
32	Brenton et al, 2014	Evaluate prevalence and factors associated with vitamin D insufficiency and deficiency in childhood vs adult-onset demyelinating disease	No difference in vitamin D deficiency between childhood and adult-onset demyelinating disease
33	Mowry et al, 2010	Determine if vitamin D status is associated with relapses in POMS	Vitamin D levels associated with relapse rates
34	Kyrsko et al, 2016	Determine whether BMI at dx of POMS predicts disease activity, including ARR and MRI lesions	>50% POMS were overweight or obese at time of dx No association between BMI at POMS dx and disease activity
35	Azary et al. 2018	Evaluate effect of diet on relapse rate in POMS	\uparrow fat intake = \uparrow hazard to relapse
36	Graves et al, 2016	Determine association between established risk factors for POMS and relapse rate	HLA-DRB1*15 modified association between vitamin D and relapse rate in POMS

Reference number	Author, year	Purpose	Results
19	Yeh, 2012	Provide overview of diagnosis and management of POMS	Exercise may reduce fatigue
37	Grover et al, 2015	Examine PA, fatigue, depression, relapse rate,	\downarrow PA = \uparrow fatigue (and vice versa)
		and MRI metrics in children with POMS and mono-ADS	\uparrow PA = \downarrow sleep/rest fatigue symptoms
			POMS had less PA than mono-ADS
			\uparrow strenuous PA = \downarrow T2 lesion volumes, sleep/rest fatigue symptoms, and annualized relapse rate
38	Grover et al, 2016	Evaluate PA with objective and self-report	Light and total PA associated with sleep/rest and fatigue
		measures with children with POMS, healthy	Exercise goal setting and self-efficacy linked to PA
		controls, and mono-ADS Assessed correlates of PA, including	POMS had less min/day vigorous PA than mono-ADS and controls
		demographic and clinical characteristics, and theory related determinants	POMS had less total PA than mono-ADS
39	Sawicki et al, 2015	Assess relationship between self-efficacy,	Self-efficacy and functional disability correlate with self-
		functional disability, and PA in POMS	report and objective measures of PA
40	Grover et al, 2015	Investigate and compare PA levels in youth with POMS, healthy controls, and mono-ADS	POMS report \downarrow PA self-efficacy and \uparrow perceived functional disability than peers
	VI. I AAIF		POMS had less vigorous PA than peers
41	Yeh et al, 2015	Describe a research agenda on PA and its consequences and promotion in POMS	Effects of PA and PA maintenance track across lifespan, particularly when developed early in life
42	Rocca et al, 2015	Editorial review on PA to control MS from childhood	Physical activity may influence disease outcome
43	Kinnett-Hopkins et al,	Validate the GLTEQ in POMS patients by	\uparrow Vigorous PA = \downarrow depressive and fatigue symptoms
	2016	using accelerometer in combination with a nomological net	POMS had less strenuous and total PA than mono-ADS

Abbreviations: GLTEQ, Godin leisure-time exercise questionnaire; mono-ADS, monophasic acquired demyelinating syndrome; PA, physical activity; POMS, pediatric-onset multiple sclerosis

Table 3 Papers investigating sleep

Reference number	Author, year	Purpose
37	Grover et al, 2015	Examine PA, fatigue, depression, relap metrics in children with POMS and m
38	Grover et al, 2016	Evaluate PA with objective and self-re children with POMS, healthy controls, Assessed correlates of PA, including of clinical characteristics, and theory relations
45	Zafar et al, 2012	Determine whether children with PO sleep disturbances, fatigue, and daytin healthy controls

Abbreviations: mono-ADS, monophasic acquired demyelinating syndrome; PA, physical activity; POMS, pediatric-onset multiple sclerosis.

Pediatric multiple sclerosis: current perspectives on health behaviors

R	es	u	lts

Moderate PA associated with fewer sleep/rest pse rate, and MR nono-ADS fatigue symptoms Moderate PA associated with fewer sleep/rest port measures with and mono-ADS fatigue symptoms demographic and lated determinants POMS more successful in following consistent OMS have more ne sleepiness vs bedtime routines POMS had comparable fatigue with matched controls

Twenty papers were identified via the literature search that addressed health-promoting behaviors in POMS, and 11, 8, and 3 papers focused on diet, activity, and sleep, **Health-promoting** respectively. behaviors were associated with markers of disease burden in POMS. Physical activity participation was associated with reduced relapse rate, disease burden, and sleep/rest Nutritional fatigue symptoms. particularly vitamin D factors, intake, may be associated with relapse rate. Obesity has been associated with increased risk of POMS is POMS. developing associated with sleep better hygiene, and this may benefit fatigue and quality of life. Discussion Children with POMS benefit from participation in health behaviors, particularly better physical activity, diet, and sleep. Although each of behaviors health have these evidence supporting the influential nature, there are no current interventions targeting promotion of these behaviors. Health behavior promotion in children with POMS represents an appropriate method of managing primary and secondary Future interventions symptoms. health targeting behavior are to establish evidencerequired based strategies for treating POMS in rehabilitation settings.

uab.edu

Results