THE UNIVERSITY OF ALABAMA AT BIRMINGHAM Knowledge that will change your world

Introduction

- The energetic cost of walking (C_w) is defined as amount of oxygen consumed per kilogram of boo weight per unit distance walked.
- C_w is higher in persons with multiple sclerosis (MS) than healthy controls and influences fatigu and daily activity.
- Spasticity of ankle plantarflexors might influence C_w, and alterations in gait parameters may explain this association between spasticity and C_w

Purpose

The current study examined the associations among C_w, spasticity of the ankle plantarflexors, and spatiotemporal gait parameters in persons with MS who had moderate disability.

Methods

PARTICIPANTS: 44 persons with MS who had Expanded Disability Status Scale scores between 4 and 6.0 (i.e., a benchmark of moderate mobility disability indicative of the 2nd stage of MS)

MEASUREMENTS:

Energetic Cost: O₂ consumed per kilogram of body weight per unit distance traveled during last three minutes of the 6-Minute Walk (steady-state VO₂)

Figure 1. Oxygen consumption over a six-minute walk test in the sample of persons with MS (n=44).

Energetic Cost of Walking and Spasticity in Persons with Multiple Sclerosis with Moderate Disability Brenda Jeng, Brian M. Sandroff, & Robert W. Motl

Methods Continued

the dy	<i>Spasticity:</i> Measure of hypertonia of a scale, ranging from 0 (no increase in n contracture) using the Modified Ashw			
1e	<i>Gait Parameters</i> : Measure of cadence (from 4 walking trials on a 16-foot GAI comfortable pace			
e	Resul			
nin	Table 1. Descriptive statistics of spasticity Measurement			
	Cadence (steps/min) Step length (cm)			
lg	C _w (ml·kg ⁻¹ ·m ⁻¹) Note: Mean (SD); MAS, Modified Ashwor			
S	Table 2. Summary of correlations among spast			
	1. MAS 2. Cadence (steps/min)			
	3. Step length (cm)			
.0	4. C_w (ml·kg ⁻¹ ·m ⁻¹) Note: MAS Modified Ashworth Scale: * $n < 0.6$			
	Table 3. Summary of regression analysis for spasticity			
7	Step 1			
	Note: $R^2 = .272$ for model ($p < .01$)			
	Step 2			
4	MAS			
	Cadence Note: $R^2 = .435$ for model (<i>p</i> < .01)			
	Step 3			
	MAS Cadence			
	Step length			
	Note: $R^2 = .501$ for model ($p < .05$)			
360	Note: MAS, Modified Ashworth Scale; *p<0.05; B U			
	Beta, β Standardized Beta			

nkle plantarflexors on a five-point nuscle tone) through 4 (fixed orth Scale

(steps/min) and step length (cm) **ITRite electronic walkway at**

ts

y, cadence, step length, and C _w			
	Mean (SD)		
	1.59 (1.04)		
	95.25 (20.26)		
	53.80 (14.75)		
	0.17(0.07)		

rth Scale

ticity,	cadence,	step	length,	and C _w	

1	2	3	4
-0.45*			
-0.40*	-0.40*		
0.52*	-0.59*	-0.56*	
4 • 1 1 4			

05, two-tailed test

	andamaa	ond	atom	longth	nnodicting	$\mathbf{\Gamma}$
ILV.	cauence.	anu	SLED	length	breakting	
				8	I = • • • = • • • • • • • • • • • • • •	- W

	$\mathbf{C}_{\mathbf{w}}$	
B	SE B	ß
0.039	0.010	0.522*
0.024 -0.002	0.010 0.000	0.320* -0.451*
0.018 -0.001 -0.002	0.010 0.001 0.001	0.248 -0.339* -0.302*

- MS.

- disability.

Justandardized Beta, SE B Standard Error of

Discussion

• Spasticity of the ankle plantarflexors was significantly associated with C_w measured during over-ground walking in persons with moderate

Persons with moderate MS who have higher levels of spasticity demonstrate slower cadence and shorter stride length.

The identification of cadence and step length as intervening variables of the association between spasticity and C_w indicates that altered spatiotemporal gait parameters might result in the energetic penalty of walking brought upon by spasticity in those with MS who have moderate mobility disability.

Future Directions

Research might consider the application of a therapeutic, rehabilitation intervention for managing spasticity to possibly reduce C_w among persons with MS who have moderate mobility

Such interventions may result in secondary benefits including management of fatigue and improvement in quality of life in persons with MS.

ABORATORY

SCHOOL OF HEALTH PROFESSIONS

