

Adaptation of the Cognitive Symptom Management and **Rehabilitation Therapy (CogSMART) Program for Individuals** with Multiple Sclerosis

Introduction

- Cognitive impairment is present in up to 70% of people with m (MS)¹
- Even subtle cognitive difficulties have a big impact on quality or
- The Cognitive Symptom Management and Rehabilitation Thera (CogSMART) program was developed by Elizabeth Twamley t compensatory approach to the cognitive rehabilitation of individ traumatic brain injury (TBI) and has been successful at improv and psychosocial outcomes³
- The cognitive dysfunction present in those with MS is compara observed in those with TBI and thus a similar intervention may

Objectives

- The goals of the present study were:
 - to adapt the CogSMART program for use with those wi
 - to conduct a program evaluation of the adaptation to be evaluate efficacy

Methods

Participants:

Five participants: 4 females and 1 male; 4 with RRMS and mean age 51.40 (11.63); mean education 14 (2.12); mear illness 13 (7.24); mean PDDS 1.80 (1.48)

Procedures:

- Session content was modified by two neuropsychologists in MS to reflect the associated physical and cognitive sym disease
- Pre and post intervention assessments evaluated objective subjective cognition, mood, fatigue and quality of life
- All participants completed once weekly 2-hour CogSMAR⁻ sessions on 10 subsequent evenings

<u>Analysis:</u>

- Cognitive impairment on the various neuropsychological te defined as any score equal to, or lower than 1.5 SD below
- Reliable change index (RCI) that accounted for practice ef calculated at the level of each participant, to assess individe objective cognition, mood and fatigue over time
 - A change of scores is considered reliable if the RCI outside +/-1.64
- Paired sample t-tests evaluated change in prospective me subjective cognition, fatigue and quality of life variables

Acknowledgments

The authors would like to thank the participants for their time and effort. Their contribution authors would also like to thank Dr. Elizabeth Twamley for allowing the CogSMART prog MS population and Dr. Ruth-Ann Marrie for sharing test-retest reliability data.

Alyssa Lindsay-Brown^{1,3}, Mike Van Adel², Lisa A. S. Walker^{1, 2, 3, 4}

1. Carleton University, 2. Ricci and Associates, 3. Ottawa Hospital Research Institute, 4. University of Ottawa Brain and Mind Research Institute.

	Table 1. Reliable chan	ge indices e	evaluating o	objective c	ognitive cha	ange over time
	Measure	MS01	MS02	MS03	MS05	MS06
	SDMT	1.25	-0.33	0.94	0.94	<mark>-1.91</mark>
	CVLT-II total score	0.19	1.58	0.74	<mark>3.40</mark>	-0.23
uitiple scierosis	BVMT-R total score	-0.77	1.07	1.07	0.28	0.02
	RO = individuals where	o show RC	l-confirmed	improvem	ent (> +1.6	4)
of life ²	= individuals wh	o show RC	l-confirmed	decline (<	: -1.64)	
apy					·	
to provide a	Table 2. Reliable chang	ge indices e	valuating m	nood chang	ge over time	9
duals with	Measure MS01	MS02	MSC	D3 I	MS05	MS06
ving cognitive	PHQ-9 -0.81	<mark>-2.65</mark>	0.10) -	0.81	<mark>-2.96</mark>
	HADS-D 2.17	-0.74	<mark>1.68</mark>	3	<mark>1.94</mark>	-3.17
	GAD-7 <mark>2.04</mark>	<mark>-1.80</mark>	-1.2	1	<mark>·2.10</mark>	-0.33
	HADS-A 0.73	<mark>-2.90</mark>	-0.0	7	<mark>-5.73</mark>	0.73
' be beneficial	RCI = individuals who	show RCI	-confirmed i	improveme	ent (< -1.64))
	= individuals who	show RCI	-confirmed	decline (>	+1.64)	
	Table 2 Deliable above	, indiana a				
	Table 5. Reliable chang		evaluating fa	augue cha	nge over til	IIE
			Dants			
		(IN=5)	N 404	12	MOOF	MOOC
	measure MSUI	IVISU2		J3	NISU5	
tn IVIS			U.U	improvem	$\frac{-0.21}{00t} (-1.6)$	<mark>-2.79</mark> 1)
egin to						+)
		snow RCI	-contirmed	aeciine (>	+1.64)	
	"Participant started Alei	tec during	ine prograr	n		
	—					
	Table 4. Means a	nd standar	d deviations	s of neurop	osychologic	al and subjectiv
	measures pre an	a post inter			N A -	on noot
	weasure		interventio		ivie int	ervention (CD)
	SDMT			30)	ווונ אפ <i>ו</i>	
I 1 with PPMS;	CVI T-II total sco	re	49 40 (18)	96)	57	.20 (15 56)
duration of	BVMT-R total sco	ore	22.80 (8.0)	7)	24	.80 (5.76)
	RPA-ProMem tot	al	6.60 (3.8	5)	9.6	60 (1.67)
	score			,		
with expertise	Short-term		3.00 (1.8	7)	4.8	30 (1.30)
ntome of tho	Long-term		3.60 (2.3	0)	4.8	30 (1.30)
	Event-based	ł	3.60 (2.3	0)	5.8	30 (0.45)
•	Time-based		3.00 (2.3	4)	3.8	30 (1.64)
e cognition,	PDQ total		39.80 (3.8	3)	34	.80 (5.80)
	MONQ self		32.60 (3.5)	8) 50)	26	.60 (5.81)
T for MS group	CDSA problems		∠0.ðU (11. 20.40 (7.9)	3) 3)	23	.00 (14.05) 10 (7.02)
	CPSA etratogias		50 10 (1.0)	3) 4)	20	.40 (1.02) 40 (8 11)
	PHQ-9 total		12.80 (1.7)) 9)	6 8	30 (4.76)
acte was	GAD-7 total		10.00 (4.2	4)	6.8	30 (4.87)
	HADS total		16.60 (3.2	1)	12	.60 (4.16)
ine mean	HADS-D		5.00 (3.3	1)́	5.4	40 (1.95)́
tects was	HADS-A		11.60 (3.9	1)	7.2	20 (3.42)
dual change in	SF-36 phys		39.36 (8.9	0)	37	.72 (12.73)
	SF-36 ment		42.36 (6.5	5)	44	.82 (8.50)
value lies	mFIS total		56.60 (6.5	8)	45	.60 (15.63)
	NFI-MS total		21.00 (4.9	0)	20	.00 (5.43)
HIOLY,	1 Chiaravalloti N. D. & Doluce L. (2)	108) Cognitive im-	airmont in multiple	a sclarosis / anas	t Neurology 7(10)	1130 - 1151
	doi:10.1016/S1474-4422(08)70259-X	. Cognitive imp	anneni in multiple	5 501210515. Lance	. iveuroiogy, 7(12),	1109 - 1101.
	² Hoffmann, S., Tittgemeyer, M., & vol	n Cramon, D. Y. (2	007). Cognitive im	pairment in multip	ole sclerosis. Curre	nt Opinion in Neurology, 2
	³ Twamley, E., W., Jak, A. J., Bondi, N	/I. W., & Lohr, J. B.	(2014). Cognitive	symptom manage	ement and rehabilit	tation therapy (CogSMAR
ו is invaluable. The	veterans with traumatic brain injury: F	Pilot randomized co	ontrolled trial. Journ	nal of Rehabilitation	on Research and D	Development, 51(1), 59 – 7
ram to be adapted for a	⁴ Twamley, E. W., Vella, L. Burton, C.	Z., Heaton, R. K.,	& Jeste, D. V. (201	12). Compensator	y cognitive training	g for psychosis: Effects in a
	randomized controlled trial Journal of	t Clinical Psychiatr	v 73(9) 1212 – 12	219 doi:10 4088/	ICP 12m07686	

⁵Mitolo, M., Venneri, A., Wilkinson, I. D., & Sharrack, B. (2015). Cognitive rehabilitation in multiple sclerosis: A systematic review. *Journal of* Neurological sciences, 354(1-2), 1 – 9. doi:10.1016/j.jns.2015.05.004.

•	Level of impairment varied
	information processing sp

- SDMT 60% at pre-intervention, 60% at post-intervention
- CVLT-II 20% at pre-intervention, 20% at post-intervention
- BVMT-R 20% at pre-intervention, 0% at post-intervention • Besides two exceptions, reflective of an improvement in verbal memory and a decline in information processing speed, most aspects of objective cognition remained stable from pre to post intervention (Table 1)
- An improvement in short-term prospective memory was observed • RPA-ProMem: pre-intervention (M= 3.00, SD=1.87) and post-intervention (M=4.80, SD=1.30); t(4) = -3.67, p = 0.021, d = 1.13
- Subjective ratings of cognition improved from pre- to post-intervention PDQ: pre-intervention (M=39.80, SD=3.83) and post-intervention (M=34.80, SD=5.80); t(4) = 6.71, p = 0.003, d = 4.23
- An increase in strategy use was noted • CPSA strategies: pre-intervention (M=50.4, SD=4.34) and postintervention (M=60.4, SD=8.44); t(4) = -3.56, p = 0.024, d = 1.56
- Individual changes in anxiety were observed and both group and individual changes in depression were noted (Table 2)
 - PHQ-9: pre-intervention (M=12.8, SD=1.79) and post-intervention (M=6.8, SD=4.76); t(4) = 3.12, p = 0.036, d = 1.83
 - HADS-D: pre-intervention (M=5, SD=3.31) and post-intervention (M=5.4, SD=1.95); t(4) = -1.18, p = 0.862
- No significant group changes were demonstrated across quality of life and fatigue variables, although one individual reported less fatigue (Table 3)

memory (short-term)

- Lack of more widespread changes in objective cognition can be explained by ceiling effects and the nature of a compensatory-based cognitive rehabilitation program
- Improvements in subjective cognition suggest that individuals are learning new strategies and making better use of strategies, creating a perception of improved cognition
- An overall significant decrease in depression severity was noted suggesting positive impact of the intervention on mood
- The lack of any notable improvements in quality of life may suggest that that quality of life ratings may take longer to change⁵
- The intervention did not lead to any appreciable differences in fatigue
- The program was rated quite highly by participants, as all participants completed the program and anecdotally reported how much the program meant to them and how helpful it was
- The present feasibility study provides important first steps towards establishing the efficacy of the CogSMART for MS program and initial support for the continuation of this program for people living with MS

Results

d with the majority of participants being impaired on beed and attention

Discussion

• Similar to previous studies^{3, 4}, improvements were noted in prospective