

Exploring the Role of Physical Activity and Exercise for Managing Vascular Comorbidities in People with Multiple Sclerosis: A Scoping Review Benjamin W. Ewanchuk^{1*}, Marjan Gharagozloo^{2*}, Evelyn Peelen^{3*}, & Lara A. Pilutti⁴

¹Department of Biochemistry & Molecular Biology, University of Calgary; ²Department of Pediatrics, Université de Sherbrooke; ³Department of Neuroscience, Université de Montréal; ⁴Interdisciplinary School of Health Sciences, University of Ottawa

Background

- Vascular comorbidities are prevalent among people with multiple sclerosis (MS) and have adverse disease-related consequences:
- These include diagnostic delays, increased relapse risk and disability progression, reduced health-related quality of life, and increased mortality risk (1).
- In the general population, physical activity (PA) and exercise training have proven highly beneficial at all levels of vascular disease risk management (2).
- People with MS participate in less PA and have lower physical fitness levels compared to non-diseased individuals, and both PA and fitness have been associated with disability status and disease progression (3). Consequently, PA and exercise represent behavioral targets for potentially managing vascular comorbidities and their consequences in people with MS.

Objective

To conduct a scoping review of existing evidence linking PA and exercise training to potential modification of vascular comorbidities and related risk factors in people with MS.

Methods

- Five electronic databases were searched from inception to Nov 2017.
- <u>Search terms</u>: "multiple sclerosis" AND "physical activity" OR "exercise" OR "fitness" OR "sedentary" OR "sitting" AND "vascular comorbidity" OR "obesity" OR "body mass index" OR "hyperlipidemia" OR "cholesterol" OR "heart disease" OR "atherosclerosis" OR "hypertension" OR "high blood pressure" OR "diabetes" OR "glucose resistance".
- Data were summarized by both vascular comorbidity subcategory and study design (observational vs. interventional).

Figure 1. PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) flow diagram depicting literature search and review process.

*These authors contributed equally to this work.

	Results
 Observational Studies (<i>n</i>=17) 	 Interv
 Total Comorbidity (n=3) Obesity (n=12), 	• Ob
Hyperlipidemia (<i>n</i> =2), Vascular Function/	Fu
$[1, \dots, n] = [1, \dots, n] = [1, \dots, n]$	

Balto et al. (2017)

Motl et al. (2011) 561

Balto et al. (2016) 69

Pilutti et al. (2015)

Ward et al. (2013) 2:

Schwartz et al.

Snook et al.

Slawta et al.

Tettey et

(2012)

Ranadive et al.

(2002)

(2005)

436

123

178

Obesity, Hyperlipidemia, Diabetes

ular Function/Hypertensior

Hubbard et al.

Kalron (2017)

Marck et al.

(2014)

(2015)

Marck et al.

Hypertension (*n*=1), Diabetes (*n*=1) Data supporting a beneficial role for PA/fitness could be drawn from each comorbidity category.

Vascular Com	PA / Fitness				
Туре	Measure	Measure	Key Fi		
Total Comorbidity (incl. Hyperlipidemia, Vascular Function/Hypertension, Diabetes)	Health history questionnaire, comorbidity questionnaire for MS	GLTEQ	↓ PA ↔ ↑ PA = # ca		
 Total Comorbidity (incl. Vascular Function/Hypertension, Diabetes)	Self-Administered Comorbidity Questionnaire	IPAQ			
Total Comorbidity (incl. Vascular Disease/Hypertension)	Self-reported questionnaire	GLTEQ, Accelerometer	↓ PA (acc (r=–0.19 ↓ PA (GL (r=–0.161		
Obesity	ВМІ	GLTEQ	PA rates		
Obesity	BMI	Self-reported sitting time (IPAQ)	↑ sitting		
Obesity	ВМІ	2MWT, 6MWT	↓ 2MWT /		
Obesity	BMI	IPAQ	↓ PA ↔ ↑		
Obesity	Body composition (%BF, fat mass, lean soft tissue, via DXA)	VO2peak	VO _{2peak}		
Obesity	BMI	GLTEQ	↑ PA ↔ ↑ ↓ PA ↔ ↑		
Obesity	BMI, body composition (%BF, trunk fat, via DXA), waist circ.	GLTEQ, Pedometer, Accelerometer,	↑ PA (GL ↓ BMI, %		
Obesity	Body composition (%BF, lean mass-leg, via DXA)	Pedometer, 6MWT	PA (step 6MWT = 6MWT ↔		

↑ Indicates higher measure; ↓ Indicates lower measure; ↔ Indicates significant association between measures; = Indicates no association between measures

BMI, body composition (%BF,

Leisure-time PA

METs

via ∑4-SKF), waist circ.

Triglyceride, HDL, LDL,

Triglyceride, HDL, LDL,

cholesterol, ApoA-I, ApoB

Glucose levels

FBF, CAC, cPWV

Rof	n	Vaso	ular Comorbidity	Intervention	
Rel.	"	Туре	Measure	Туре	D
Pilutti et al. (2014)	82	Obesity	BMI, body composition (%BF, whole-body fat mass, lean mass, via DXA)	Behavioral intervention to increase lifestyle PA	24
Schmidt and Wonneberger (2014)	60	Obesity	Body composition (%BF, via ∑10-SKF)	Aerobic training (2x interval training, 1x continuous training /wk)	52
Wens et al. (2015a)	34	Obesity	Body composition (%BF, lean mass, via DXA)	 HITR (<i>n</i>=12): interval aerobic training (leg cycle ergometer) HCTR (<i>n</i>=11): continuous aerobic training (cycling/treadmill) Resistance training (leg press, leg curl, leg extension, arm curl, chest press) (all, <i>n</i>=23) 	24
Petajan et al. (1996)	46	Obesity, Hyperlipidemia	Body composition (%BF, via ∑4-SKF) Triglyceride, HDL, LDL, VLDL, cholesterol	Aerobic training (combined arm and leg cycle ergometer)	1:
Fragoso et al. (2008)	9	Obesity, Vascular Function/ Hypertension	BMI, body composition (%BF, %lean mass) Blood pressure (BP)	Aerobic training, resistance training, and stretching exercises	2(
Wens et al. (2017)	34	Obesity, Diabetes	Body composition (%BF, lean mass, via DXA) Glucose and insulin levels (oral glucose tolerance test), muscle GLUT4 (biopsy)	HлтR (<i>n</i> =12): interval aerobic training (leg cycle ergometer) HстR (<i>n</i> =11): continuous aerobic training (cycling/treadmill) Resistance training (leg press, leg curl, leg extension, arm curl, chest press) (all, <i>n</i> =23)	1:
Wens et al. (2015b)	45	Obesity, Diabetes	Body composition (%BF, fat mass, lean mass, via DXA) Glucose and insulin levels oral glucose tolerance test)	Aerobic training (cycling/treadmill and resistance training (leg press/curl/ extension, arm curl, chest press)	24
White et al. (2006)	12	Obesity, Hyperlipidemia Vascular Function/ Hypertension, Diabetes	 BMI, body composition (%BF, via ∑3-SKF) Triglyceride, HDL, cholesterol Blood pressure (BP) Glucose levels 	Resistance training (knee + spinal flexion/ extension, plantar flexion)	8
Keytsman et al. (2017)	16	Obesity, Hyperlipidemia Vascular Function/ Hypertension, Diabetes	Body composition (%BF, fat mass, lean mass, via DXA) Triglyceride, HDL, LDL, cholesterol Blood pressure (BP) HbA1c, glucose and insulin levels, insulin	HπR: interval aerobic training (leg cycle ergometer) Resistance training (leg press, leg curl, leg extension, arm curl, chest press)	1:

↑ Indicates increase in outcome measure in response to intervention; ↓ Indicates decrease in outcome measure in response to intervention; = Indicates no significant change in outcome measure in response to intervention.

ventional Studies (*n*=17)

besity (*n*=17), Hyperlipidemia (*n*=3), Vascular unction/Hypertension (*n*=4), Diabetes (*n*=4) • Modality highly variable (aerobic vs. resistance vs. combination vs. specialty [e.g. yoga, behavioral]) 8-52 wks; 2-3 x/wk; <30-90 mins/session

indings
↑ total # comorbidities (p<0.01) cardiovascular disease symptoms (p=0.10)
\downarrow total # comorbidities (p=0.054)
ccelerometer) $\leftrightarrow \uparrow$ # cardiovascular comorbidities 92/-0.225, p<0.01, OR1.4)
LTEQ) $\leftrightarrow \uparrow$ # cardiovascular comorbidities 61/-0.151, p<0.01, OR1.3)
s ↔ BMI (χ2=4.9, p<0.05)
g time $\leftrightarrow \uparrow$ BMI (p=0.009)
Γ/6MWT distance ↔ ↑ BMI (both p≤0.001)
↑ BMI (p<0.001)
↔ %BF (r=_0.69/r=_0.65), fat mass (r=_0.50/r=_0.49), n soft tissue (r=0.41/r=0.37) (all p<0.05)
↑ normal BMI (p<0.0001) ↑ obese BMI (p<0.001)
LTEQ, pedometer, and accelerometer) ↔ ⁄⁄BF, trunk fat, and waist circ. (all p<0.05)
p-counts) = %BF, lean mass-leg/body mass ratio = %BF
\rightarrow lean mass-leg (r=0.45, p<0.05)
↓ BMI (p=0.002), %BF (p=0.0002), waist circ. (p=0.0001), ride (p=0.0005), glucose (p=0.002)

PA = HDL (p=0.09), LDL (p=0.27), cholesterol (p=0.06)

 $PA \leftrightarrow \downarrow$ triglyceride (p=0.004), non-HDL (p=0.005), LDL/HDL ratio (p=0.038), cholesterol/HDL ratio (p=0.012), ApoB (p=0.004) ApoB/ApoA-I ratio (p=0.030) PA = resting FBF and CAC PA \leftrightarrow peak FBF (r=0.38, p<0.05)

 $PA \leftrightarrow cPWV$ (r=_0.33, p<0.05

 Table 1. Observational

14 of 17 (82.4%) identified observational studies, each reporting an association between higher levels of PA or cardiorespiratory fitness, or decreased sedentary behavior, and better function of at least one risk factor related to vascular comorbid conditions in people with

Table 2. Interventional

9 of 17 (52.9%) identified interventional studies, each reporting

improvement in at least one relevant measure of vascular comorbidity in response to training intervention in participants with MS.

Comorbid Measure(s)

- Obesity-related risk factor management
 - Role for PA/fitness/exercise supported by 15/29 studies (51.7%) Improvements in body composition seemed to require an intervention
 - duration of \geq 12 weeks. BMI was unaffected in each study
- **Diabetes**-related risk factor management
- Role for PA/fitness/exercise supported by 3/5 studies (60.0%) • High intensity aerobic training was more effective at limiting diabetes-related risk factors than mild-to-moderate training or resistance training alone.
- management

Evidence points to a potential relationship between PA/exercise and risk factors related to vascular comorbidities in people with MS. PA and exercise training interventions may represent an effective therapeutic strategy for managing vascular comorbidities in people with MS, justifying further investigation

- RRMS, SPMS, PPMS)

. Marrie R.A. et al. (2010). Vascular comorbidity is associated with more rapid disability progression in multiple sclerosis. *Neurology* 74(13): 1041-1047.

This work was completed as part of an endMS interdisciplinary learning project while BE, MG, and EP were enrolled in the Scholar Program for Researchers in Training (SPRINT). SPRINT is part of the endMS National Training Program funded by the Multiple Sclerosis Society of Canada through its related Multiple Sclerosis Scientific Research Foundation.

Conclusions

 Cross-sectional data offers the most consistent, compelling evidence for the potential benefits of PA on vascular disease risk factors.

• The efficacy of exercise training in limiting vascular comorbidity risk and burden was dependent upon intervention type and duration.

Hyperlipidemia- and Hypertension/Vascular Function-related risk factor

• Role for PA/fitness/exercise – supported by 4/5 studies (80.0%, hyperlipidemia) and 2/5 studies (40.0%, vascular function/hypertension) • Triglycerides, but not other lipids, were consistently \downarrow with \uparrow PA/exercise Overall the extracted evidence for hyperlipidemia and hypertension was promising but limited/mixed, preventing conclusive conclusions

Future Directions

• Future studies aimed at supplementing interventional evidence should: Be designed to measure vascular disease risk factors as a primary outcome • Include larger cohorts and heterogenous MS populations (man, woman,

Use appropriate, validated measurements for vascular disease factors Include long-term follow-up after completion of the intervention

Define which training regime is most effective in managing each comorbidity

References

2. Thompson P.D. et al. (2003). Exercise and physical activity in the prevention and treatment of atherosclerotic cardiovascular disease. Circulation 107(24): 3109-3116. 3. Sandroff B.M. et al. (2012). Physical activity and multiple sclerosis: new insights regarding inactivity. Acta Neurol Scand 126(4): 256-262.

Acknowledgements