

Introduction

- Multiple Sclerosis (MS) is a chronic neurological disease typically diagnosed in young adulthood¹
- Most individuals require costly treatment for motor and sensory symptoms as well as fatigue, depression, and cognitive decline²
- Many continue to have debilitating MS symptoms and side effects from medication³
- There is a crucial need for low cost behavioural treatments that are effective in reducing MS symptoms
- Physical activity has shown promise in managing other neurological disorders and it has been hypothesized that physical activity may be neuroprotective^{4,5}

Objective

• To investigate the relationship between physical activity and MS symptoms of fatigue, depression, and perceived cognitive impairment

The Relationship Between Physical Activity, Fatigue, Mood, and Perceived Cognitive Impairment in Adults with Multiple Sclerosis Chantel D. Mayo¹, Kelly Miksche¹, Kristen Attwell-Pope², Jodie R. Gawryluk¹

¹Department of Psychology, University of Victoria, British Columbia, Canada; ²Department of Neurology, Island Health, British Columbia, Canada

Recruitment

Measures

 Physical activity and MS symptoms were assessed using the following measures⁶⁻⁹:

Physical Activity

Godin Leisure-Time Exercise Questionnaire (GLTEQ)

Fatigue Modified Fatigue Impact Scale (MFIS)

Statistical Analyses

- Descriptive and correlational statistics were performed with R Studio
- Partial correlation coefficients were calculated to investigate the relationship between GLTEQ and MFIS, PHQ-9, and PDQ, controlling for age

Methods

Mood

Patient Health Questionnaire (PHQ-9)

Cognition

Patient Deficit Questionnaire (PDQ)

•	Table 1.	Partic	ipant D	emo
	N A	Age	Edu	icatio
	86 56.45			
	RRMS: relapsin	_		
	Measure	Me	ean ore	Med
	GLTEQ	33	.94	Sco 3
	MFIS PHQ-9		.28 .74	4
1	PDQ		5.57	2
			as a	
	rela	tion	ship	be
	activity and fa			
	but	not	perc	ceiv
ļ	Fatigue			
	r =	34, p =	.002	
				\frown
				U
	Indi	vidu	uals '	wit
	stre	nuo	us a	nd
	reported fewer			
	•		sion	
		_		
	J		al ac	
additional b				eh
	manage MS sv			

Lassman, H. (2018). Multiple sclerosis pathology. Cold Spring Harb Perspect Med 8, 1-15. ²Compston, A., & Coles, A. (2008). Multiple sclerosis. Lancet, 372(9648), 1502-1517. ³ Torkildsen, O., Myhr, K.M., & Bo, L. (2016). modifying treatments of multiple sclerosis – a review of approved medications. European Journal of Neurology, 23, 18-27. 4 Jang, Y., Koo, J. H., Kwon, I., Kang, E. B., Um, H. S. Soya, H., Lee, Y. & Cho, J. Y. (2017). Neuroprotective effects of endurance exercise against neuroinflammation in MPTP-induced parkinson's disease mice. Brain Research, 1655, 186-193. 5 Sa, J.M. (2014). Exercise therapy and multiple sclerosis: a systematic review. Journal of Neurology, 261, 1651-1661. ⁶Godin, G. and Shephard, R. J. (1985). A simple method to assess exercise behaviour in the community. Can J Appl Sport Sci 10, 141- 146. ⁷Fisk, J.D., Ritvo, P.W., Ross, L., Haase, D.A., Marrie, T.J., & Schlech, W.F. (1994) Measuring the functional impact of fatigue: initial validation of the Fatigue Impact Scale. Clinical Infectious Diseases, 18, S79-S83 ⁸Kroenke, K, Spitzer, R.L., & Williams, J.B.W. The PHQ-9: Validity Of a brief depression severity measure. JGIM, 16, 606-613.9Ritvo, P. G., Fischer, J. S., Miller, D. M., Andrews, H., Paty, D. W. & LaRocca, N. G. (1997). MSQLI Forms. In Multiple Sclerosis Quality of Life Inventory: A User's Manual. Retrieved from http:// www.nationalmssociety.org/For-Professionals/Researchers/Resources-for-Researchers/Clinical-Study-Measures/Multiple-Sclerosis-Quality-of-Life-Inventory-(MSQL)

onclusions

th MS who reported more d/or frequent physical activity symptoms of fatigue and

ity holds promise as an navioural treatment to better manage MS symptoms

References